The Poet’s Guide to the Physics of Twisted Pair Cabling

Poet's Guide

Feb 26, 2020

I once took a class where the professor would explain concepts in two ways. First, he would dive into the mathematics behind the idea, filling the whiteboard with equations and showing how they all related to one another. He tagged this “for the engineers,” Then, he would explain the concept again, but this time, with no math at all. This he said, was “for the poets.” 

So why is datacom cabling twisted, but power cabling is not? It’s all about bandwidth. Power signals are of such low frequencies that they don’t need to worry about bandwidth, but datacom cables do. A high frequency signal on a wire generates a magnetic field that can induce a signal on an adjacent wire. These induced signals are called “crosstalk,” because with old analog telephone lines, you could often hear other conversations in the background of your call resulting from these induced signals.

Imagine the Ethernet interface in your computer transmitting a signal. When a signal is sent on the transmit (Tx) line, a signal is induced on the receive (Rx) line. That’s a problem because the rules of Ethernet state that you stop talking if someone else is talking at the same time. But if every time your computer tried to talk, it would hear itself, and stop. Looks like you won’t be sending the email after all.

In reality, the induced signal is many times weaker than the original, which makes this less of a problem. However, the receive electronics need to be very sensitive. That’s because high frequency signals attenuate greatly over the length of a cable. For example, the IEEE 802.3 specification for 1000BASE-T allows a maximum of 24 dB of loss, which translates to a signal being reduced to (I’ll do the math for you poets) 6% of its original strength on its trip from the far end transmitter to your computer’s ethernet port. So the crosstalk signal does not have to be big to overwhelm that. As you move further from your computer interface, the received signal gets stronger and is less susceptible to crosstalk. That means the problem is worst nearest to the transmitter, so the key specification is called Near End Crosstalk or NEXT.

Engineers have a number of tricks up their sleeves to deal with NEXT. First, data signals are encoded onto a cable in “differential” mode — that means that every positive pulse on a conductor is matched by a corresponding negative pulse on the other conductor in the pair. That means that the wires generate equal but opposite magnetic fields that cancel each other out and should generate no crosstalk. However, if the wires simply run parallel to one another, then one wire in the pair will be closer to one of the fields, so the magnetic field will be just a little bigger for one wire than the other and you’ll get a little bit of crosstalk.

So the second trick is twisting the cable. That way, the distance between the wires varies along the length of the run, sometimes closer to the positive wire, other times closer to the negative. This tends to cancel out the effect reducing the crosstalk even more. But if the pairs are all twisted at the same rate, it’s possible that they would keep the same spacing over the entire run, resulting in increased crosstalk. That’s where the third trick comes in – the pairs are twisted at different rates so they won’t remain equally spaced to the same conductor along the run. 

The different twist rates are why you’ll see different lengths for each pair when you measure the length of each with a cable tester. If you were to untwist them and stretch them out flat, the ones with more twists would be a little bit longer. Length can differ by 5% or more — the TIA limit for cabling length is based on the shortest pair.

Even though the conductors run in parallel for only a short distance in the modular (RJ-45) connector, they typically are the biggest contributor to NEXT on an installed link. And just a little too much untwisting when installing the connectors can enhance the effect enormously and lead to links failing certification.

Newer designs achieve better crosstalk performance by using spacers in the cabling, more carefully controlling twist rates, and bonding the pairs together. And new technologies such as 10GBASE-T and PoE require more than just great crosstalk performance. But crosstalk is still one of the most important parameters in terms of high performance cabling.

If you are interested in a cable tester, check out our Copper Selection Guide.

This article was first published online by Fluke Networks.

Related Articles


Latest Articles

  • Electrical Permit Requirements for Alarm System and Voice, Data, Video Installations

    Electrical Permit Requirements for Alarm System and Voice, Data, Video Installations

    January 19, 2026 Other than the exceptions listed below, electrical permits and inspections are required for all electrical work involved in the installation of intrusion and similar alarm systems in all structures. Electrical permits and inspections ensure that low -voltage systems are installed safely and in compliance with Code requirements. A permit and inspections must Read More…

  • The Role of Lighting in the AI-Powered Home

    The Role of Lighting in the AI-Powered Home

    January 14, 2026 Elizabeth Parks, President and CMO of Parks Associates, joins Derek Richardson, Founder and CEO of Deako, for a wide-ranging conversation on how lighting is becoming a core layer of the intelligent home. The discussion explores how Deako’s plug-and-play lighting approach is removing long-standing barriers to adoption by simplifying installation, reducing costs, and Read More…

  • What Canada’s Lighting Pulse Means for Contractors and Plant Buyers in 2026

    What Canada’s Lighting Pulse Means for Contractors and Plant Buyers in 2026

    January 14, 2025 By John Kerr From the ground, many contractors and plant teams are experiencing the same thing: jobs are there, but they are smaller, more price‑sensitive, and slower to release compared to past years. The Canadian Pulse of Lighting confirms that impression and offers some clear signals about how contractors and plant electrical Read More…

  • Guide to the Canadian Electrical Code, Part 1 – 26th Edition[i] – A Road Map: Section 54

    Guide to the Canadian Electrical Code, Part 1 – 26th Edition[i] – A Road Map: Section 54

    January 12, 2026 By Bill Burr The Code is a comprehensive document. Sometimes it can seem quite daunting to quickly find the information you need. This series of articles provides a guide to help users find their way through this critical document. This is not intended to replace the notes in Appendix B or the Read More…


Changing Scene

  • Leviton Canada Partners with The Titan Group to Strengthen Midwest Presence

    Leviton Canada Partners with The Titan Group to Strengthen Midwest Presence

    January 19, 2026 Leviton Canada is proud to announce its partnership with The Titan Group, who will now represent Leviton’s Residential and Commercial & Industrial product lines across the Midwest provinces, effective January 1, 2026. “We’re excited to begin our partnership with Titan,” said Bill Tischner, Western Sales Director. “Their industry expertise, commitment to service, Read More…

  • Hammond Power Solutions Appoints Xavier Biot as Vice President, Strategic Accounts

    Hammond Power Solutions Appoints Xavier Biot as Vice President, Strategic Accounts

    January 19, 2026 Hammond Power Solutions is pleased to announce the appointment of Xavier Biot as Vice President, Strategic Accounts. In this role, he will lead HPS’s strategic account teams. He will partner with customers to align transformer and power quality solutions with evolving electrification, sustainability, and operational needs. His focus will be on helping Read More…

  • Hammond Manufacturing Expands to Western Canada

    Hammond Manufacturing Expands to Western Canada

    January 13, 2026 Hammond Manufacturing have announced that they are opening a new distribution facility in the Southeast of Calgary, Alberta. The new facility includes over 50,000 sq ft of warehouse space. “This addition will better serve our customers in Western Canada and stock volume and larger products to ensure our distributors have an improve stock Read More…

  • ABB Chosen to Supply Technology for BC Ferries’ New Major Vessels

    ABB Chosen to Supply Technology for BC Ferries’ New Major Vessels

    January 12, 2026 ABB will supply a complete package of power, propulsion and control technology for four new double-ended passenger and car ferries operated by British Columbia Ferry Services (BC Ferries). One of the largest ferry operators in the world, BC Ferries provides year-round vehicle and passenger service on 25 routes to 47 terminals, carrying Read More…