Arc Flash Incident Involving a Maintenance Switch

Maintenance Switch

 

Feb 12, 2016

This case study article examines the plans and processes reviewed and considered, the strategy deployed to manage/reduce arc flash hazards, and then lessons learned in the implementation of new systems to improve electrical workplace safety. The setting: a chemical processing facility with a robust electrical workplace safety process. The site experienced an actual arc flash event while energized work was being performed.

Photo courtesy: www.utilityproducts.com

The facility was planning energized work for an existing 480 V low voltage switchgear assembly that was an existing piece of equipment in the plant. During a process upgrade in the facility, an energized work permit was issued to remove three abandoned load conductors from an existing 480 V low voltage switchgear assembly cable compartment.

The work permit was very detailed and included tools planned for use in the project and required PPE for workers performing the task based on the incident energy defined by a recently completed arc flash hazard assessment. The defined task for the work order required the site contractor to use a nylon rope, which was typical with this type of project, disconnecting the de-energized cables and working to raise them from the top cable compartment. Figure 10 showsa layout of the low voltage assembly involved in the work.

The de-energized cables were to be removed from Cubicle 5, with still energized conductors existing in Cubical 4 at the bottom of the cable wireway. The rope used was not able to grab the conductors and would slip off of the cable, so the electrical contractor elected to employ a “come along” to assist in the removal, as the come along could apply more force. The first conductor was successfully removed with this new tool. Upon removing the second conductor, a small arc flash was observed in the lower compartment. Simultaneously, the lights to the plant went out.The contractor stopped work and waited for plant electricians to arrive, not knowing what had just occurred.

The event caused the entire plant to shut down, stopping work on the project until an analysis could be completed. It was determined that the chain of the come along had drifted below where the work was being performed and into energized Cubicle 4. Fortunately, the damage to the wall of the switchgear and come along tool was minimal, which is shown in Figure 11.

Post event analysis proved that the chain of the come along had drifted below where the work was being performed and into an energized cubicle. The chain touched an energized terminal and arced to ground, touching both phase conductor and cabinet ground metal below the non-energized cubicle where the electrician was working. After reviewing minimal damage and completing the project while de-energized, the plant switchgear was cleaned and re-energized. Fortunately, total downtime for the plant due to this event was minimal. No loss of equipment or injury to any employee occurred as a result of this event.

 

Eaton Arc Flash Safety

 

Low voltage assembly involved in planned energized work. The planned task included removing cables from de-energized Cubicle 5 while Cubical 4 in an adjacent section was still energized.

The important take-away here is that the arc flash study was completed before energized work was performed. The upstreamlow voltage power circuit breaker with a special maintenance switch setting discussed previously employed technology to clear the fault faster than the microprocessor instantaneous setting of the circuit breaker trip unit.

Calculations were previously performed that quantified a reduction in incident energy from 17.7 cal/cm2 to2.9 cal/cm2 using the special maintenance setting. Both workersand equipment were saved as a result of a total clearing time at 40 milliseconds as defined by the manufacturer’s published trip curves[8].

Lessons learned

This case study unequivocally proves that planning for the unplanned event can save lives. Some of the key lessons learned here:
• mistakes will happen on even the best planned projects. A change in tools is what led to this arc flash event
• proper planning and leveraging of all accessible resources prevented what could have been a catastrophic event
• leveraging technology can often deliver a reduction in the available energy. Using more sensitive settings can save both people and equipment should an arc flash event occur

Eaton Come Along

At left, a “come along” tool used for energized work and at right, damage to panel after phase to ground arc flash event with an upstream device with maintenance setting capabilities.

This case study is one of four published online by Eaton and has been lightly edited by EIN. See all case studies: http://www.eaton.com/ecm/groups/public/@pub/@eaton/@corp/documents/content/pct_1562591.pdf.

 

Related Articles


Latest Articles

  • The Role of Lighting in the AI-Powered Home

    The Role of Lighting in the AI-Powered Home

    January 14, 2026 Elizabeth Parks, President and CMO of Parks Associates, joins Derek Richardson, Founder and CEO of Deako, for a wide-ranging conversation on how lighting is becoming a core layer of the intelligent home. The discussion explores how Deako’s plug-and-play lighting approach is removing long-standing barriers to adoption by simplifying installation, reducing costs, and Read More…

  • What Canada’s Lighting Pulse Means for Contractors and Plant Buyers in 2026

    What Canada’s Lighting Pulse Means for Contractors and Plant Buyers in 2026

    January 14, 2025 By John Kerr From the ground, many contractors and plant teams are experiencing the same thing: jobs are there, but they are smaller, more price‑sensitive, and slower to release compared to past years. The Canadian Pulse of Lighting confirms that impression and offers some clear signals about how contractors and plant electrical Read More…

  • Guide to the Canadian Electrical Code, Part 1 – 26th Edition[i] – A Road Map: Section 54

    Guide to the Canadian Electrical Code, Part 1 – 26th Edition[i] – A Road Map: Section 54

    January 12, 2026 By Bill Burr The Code is a comprehensive document. Sometimes it can seem quite daunting to quickly find the information you need. This series of articles provides a guide to help users find their way through this critical document. This is not intended to replace the notes in Appendix B or the Read More…

  • Tom Penton & Magic Lite: Forty Years of Leadership in Canadian Lighting

    Tom Penton & Magic Lite: Forty Years of Leadership in Canadian Lighting

    January 12, 2026 By John Kerr Sales has always been at the core of Magic Lite’s story, because it was at the core of who its founder Tom Penton was. He genuinely loved sales, loved being independent, and consistently gravitated to roles where he could take personal responsibility for results and build his own customer Read More…


Changing Scene

  • Hammond Manufacturing Expands to Western Canada

    Hammond Manufacturing Expands to Western Canada

    January 13, 2026 Hammond Manufacturing have announced that they are opening a new distribution facility in the Southeast of Calgary, Alberta. The new facility includes over 50,000 sq ft of warehouse space. “This addition will better serve our customers in Western Canada and stock volume and larger products to ensure our distributors have an improve stock Read More…

  • ABB Chosen to Supply Technology for BC Ferries’ New Major Vessels

    ABB Chosen to Supply Technology for BC Ferries’ New Major Vessels

    January 12, 2026 ABB will supply a complete package of power, propulsion and control technology for four new double-ended passenger and car ferries operated by British Columbia Ferry Services (BC Ferries). One of the largest ferry operators in the world, BC Ferries provides year-round vehicle and passenger service on 25 routes to 47 terminals, carrying Read More…

  • Federal Government Invests in Four Ontario Steel Companies

    Federal Government Invests in Four Ontario Steel Companies

    January 12, 2026 Through targeted investments, the Government of Canada is committed to providing support to help businesses in all sectors, including steel and automotive, to respond, adapt and compete amid shifting market conditions. Evan Solomon, Minister of Artificial Intelligence and Digital Innovation and Minister responsible for the Federal Economic Development Agency for Southern Ontario Read More…

  • Craftsman V20 150W Power Inverter Recalled Due to Fire Hazard

    Craftsman V20 150W Power Inverter Recalled Due to Fire Hazard

    January 12, 2026 This recall involves the Craftsman V20 150W Power Inverter (Model number: CMCB1150B). The product has a rectangular prism shape with dimensions of 8.13 x 7.62 x 11.68 cm. It is red and black and weighs 320 grams. It has three charging ports for Type-C, Type-A, and AC connections. It contains an LED Read More…