Canadian Electrical Industry News Week

Electrical Code Updates

Bill Burr

The CE Code is a comprehensive document. Sometimes it can seem quite daunting to quickly find the information you need. This series of articles provides a guide to help users find their way through this critical document. In this article: Section 8 — circuit loading and demand factors.

This is not intended to replace the notes in Appendix B or the explanations of individual requirements contained in the CEC Handbook,* but will hopefully provide some help in navigating the Code.

Section 8 is a general section of the code. It provides you the information you need to selectthe rating of a circuit, feeder or service (i.e., ampacity of the circuit conductors and rating/setting of the circuit over current devices). Rule 8-104 describes the rating of a circuit (feeder or service) and establishes the criteria between the calculated load and circuit (feeder or service) rating. As well, it determines branch circuit positions for dwelling units.

The special terminology used in this section includes:

• Basic Load—only lighting and receptacle circuits based on the dimensions of specific building occupancy as listed in Table 14
• Calculated load – the load calculated in accordance with the rules in this section
• Demonstrated Load— the historical demand watt information recorded over 24 months for the same type of facility

The General section outlines methods of calculating voltage drop, maximum circuit loading, use of demand factors, number of branch circuit positions and determination of living areas.It specifies standard voltage divisers to be used when calculating currents from watts or volt-amperes in low voltage systems; maximum allowable voltage drop in installations; maximum circuit loading based on the overcurrent device used; and the calculated load. You will also find here the factors for determining a continuous, cyclic, or intermittent load, and how this affects the selection of conductors and equipment.

This section also outlines conditions for Use of demand factors; that is, where

• the size required for conductors and switches is not available in a standard size
• two or more loads are installed, but only one can be used at a time
• air conditioning and electric space heating are installed and only the greater load is used for calculating demand
• loads of a cyclic nature are installed such that the maximum load cannot be supplied at one time)

Where additional loads are added to an existing service or feeder, Rule 8-106(9) permits the load to be calculated by adding the sum of the additional loads to the maximum existing demand load measured over 12 months.Other demand factors can be based on demonstrated load calculations by a qualified person, as determined by the authority having jurisdiction.

Another function of this section is to outline the number of branch circuit positions needed for dwelling units. This is based on the ampacity of the service and whether a central electric furnace is intended.

The Services and feeders section outlines the methods of calculating the minimum ampacity of service or feeder conductors for various types of occupancies. Although the various options and conditions may seem complicated, methodically working through the demand factors for each type of occupancy will allow you to determine the correct ampacity for service or feeder conductors.

The methods for determining demand factors for dwelling units are divided intosingle dwellings and apartment and similar buildings.For single dwellings you are given two options depending on the size of the dwelling.In the first criterion, where the living area of the dwelling exceeds 90 m2, the basic load is 5000w and additional loads are added with various demand factors as listed in Rule8-200 (1)(a)(ii to vii). The second criterion is to use a basic load of 100 A if the floor area is 80m2 or more, or 60 A if the floor area is less than 80 m2. Note that Rule8-110 designates how to determine the living area.

For two or more dwelling units of row houses, the minimum ampacity of service or feeder conductors from a main service is based on the above demand factors for each single dwelling, excluding electric space heating and air-conditioning loads, plus the demand factors outlined in Rule 8-202(3).

For apartments and similar buildings, the minimum ampacity of service or feeder conductors from a main service is calculated according to Rule 8-202.As with single dwellings and row houses above, the basic load is based on living area plus the demand factors for various other loads as outlined in Rule 8-202 (1 to 4). It should be noted that the load calculated for a single dwelling or for dwelling units in an apartment building is not considered to be continuous. However, a house load (i.e., load of equipment installed in a common area of an apartment building) is considered to be continuous for the purpose of Rule 8-104.

There are specific rules for determining the ampacity of service or feeder conductors for schools (Rule 8-204), hospitals (Rule 8-206), and hotels, motels, dormitories, and buildings of similar occupancy (Rule 8-208). For other occupancies, as listed in Table 14, the calculations are in Rule 8-210.

One other consideration is exit, emergency and show window lighting where the loads may be spread throughout the building. Exit and emergency lighting demand shall be determined by connected load. In the case of show window lighting, demand is based on 650W/m measured along the base of the windows.

This section also outlines required branch circuit positions and demand factors. Rule 8-300 provides demand loads for branch circuits supplying electric ranges and cooking units. Rule 8-302 specifies that branch circuits supplying data processing equipment be considered continuous loads. Rule 8-304 specifies that the maximum number of outlets per any 2-wire circuit is 12, unless the actual connected load is known and the load current doesn’t exceed 80% of the overcurrent device rating.This means that the load of a typical 2-wire circuit protected by a 15 A rated overcurrent device is considered to be 12 A.

Rule 8-400 provides guidance for the number and loading of branch circuits for automobile heater receptacles generally, and where the loading on each receptacle is controlled or restricted.

In the next installment we will look at Section 10 — Grounding and bonding.

Read the rest of the instalments in the series:
Part 1: Guide to the CE Code, Part I – A Roadmap (Installment 1 in a Series)
Part 2:
A Road Map to the CE Code, Part I – Installment 2
Part 3: Guide to the Canadian Electrical Code, Part I – Installment 3
Part 4: A Road Map to the CE Code, Part 1 – Installment 4
Part 5: Guide to the Canadian Electrical Code, Part I — Installment 5
Part 6: Guide to the Canadian Electrical Code, Part I — Installment 6
Part 7: Guide to the Canadian Electrical Code, Part I — Installment 7
Part 8: Guide to the Canadian Electrical Code, Part I — Installment 8
Part 9:
Guide to the Canadian Electrical Code, Part I — Installment 9
Part 10: Guide to the Canadian Electrical Code, Part 1 - Installment 10
Part 11: Guide to the Canadian Electrical Code, Part 1 - Installment 11


 

William (Bill) Burr is the former Chair of the Canadian Advisory Council on Electrical Safety (CACES), former Director of Electrical and Elevator Safety for the Province of BC, and former Director of Electrical and Gas Standards Development and former Director of Conformity Assessment at CSA Group. Bill can be reached at Burr and Associates Consulting billburr@gmail.com.

 

 The radiant Collection: Smart Lighting Video Gallery 

Radiant CollectionElevate your space and upgrade your control. From the smartest dimmer switch and the fastest USB outlet, to a host of decorative wall plates, perfect for any taste, every device in the radiant® Collection aims to make life a little easier with extraordinary style.  Take comfort in the convenience of controlling your smart lighting system from any smart device to set the exact lighting you need — from anywhere.

 

 

 

 

Watch the video Here

 

Changing Scene

  • Prev
Susan Uthayakumar, country president, Schneider Electric, has been named a Women's Executive ...
ABB presented its electrification solutions that will allow customers to take full advantage of the ...
Electricity Human Resources Canada has introduced a new Board of Directors, effective as of their ...
Jacques Fiset, the new president of the EFC Quebec section, told us in a recent interview that his ...
Organised by the Hong Kong Trade Development Council (HKTDC), the twin lighting shows - the  ...
A Friday night, the end of summer, the weather is mild, and 2,500 people — customers, ...
Eaton focuses on developing personable connections in every aspect. In September, our team will be ...
During the recently held IMARK Canada 2019 meeting in Niagara Falls, executives from 14 of the ...
Valard has been selected by Wataynikaneyap Power LPto provide engineering, procurement ...
The Canadian Apprenticeship Forum-Forum Canadien sur l’Apprentissage (CAF-FCA) has announced ...

Ideal National ChampionshipThe 2019 Ideal National Championship was a highly charged, no-holds barred competition to determine the best electrician in North America, including teams from China, Australia and Mexico. Over 55,000 electrical contractors and electricians competed worldwide in 5 countries, and the cream of the crop competed at the 2019 Ideal National Championship in Orlando.

From November 7 to 9, 162 professionals and apprentices from the US and Canada were in Orlando to compete. 

 

 

Read More

 

 

 

Michelle BraniganBy Michelle Branigan

Have you been “ghosted” yet?

No, I’m not referring to some strange Halloween game, but rather a phenomenon which is becoming increasingly prevalent in the workplace. While the term originally referred to the dating world and what happens when someone you're involved with suddenly stops making any contact, it has now entered the workplace.

 

 

Read More

 

 

Tools for the Trade

  • Prev
  IDEAL Industries has introduced Combination Drill Taps to its tool lineup. Combining the ...
  Stripping and crimping device, 100 - 240 V input voltage, for insulated ferrules with a ...
Professional all-in-one cutter/stripper for coaxial and twisted pair cables     ...
  Klein Tools' Coax Explorrer 2 tests coaxial cable and maps up to 4 locations   ...
  Ideal Industries' T-14 wire stripper s are ideal for all professionals working within the ...
  The ATS850 conveyor eliminates all types of electro static discharge requirements. ...
  Lorik Tool & Automation has the experience and ability to manufacture a variety of ...
  Ideal Industries' 26 piece insulated Journeyman kit is ideal for new electricians or for ...
  Klein Tools Deluxe Fish Rod Set comes in 19 pieces that when assembled can fish wire and ...
  BendWorks Software was designed to help electrical contractors adopt this new process ...

Product News

  • Prev
Emerson announced the addition of a handheld puller to its Greenlee pulling lineup – the new ...
Hammond Manufacturing has announced its new 1557 family. Initially available in four plan ...
The classic TWR1 and TWR2 LED glass wall packs come with adjustable light output (ALO) technology. ...
Eaton has added a new ‘compact’ model to its class-leading MTL 937x-FB Fieldbus ...
The R16MTCPU, R32MTCPU, and R64MTCPU motion CPUs are dedicated motion control processors designed ...
The smallest robot controller in its class, the ultra-compact YRC1000micro minimizes installation ...
As part of the SICK AppSpace eco-system, the programmable SIM10xx Sensor Integration Machines offer ...
With the free, PC-based Festo Automation Suite commissioning software, getting a new drive package ...
Balluff’s inductive couplers connect up to eight discrete sensors across a small air gap, ...
The IP20 product family from Bihl+Wiedemann welcomes a new member:      

 

TWR2 LEDThe classic TWR1 and TWR2 LED glass wall packs come with adjustable light output (ALO) technology. TWR LED dials in to desired output to match the needs of any job site, and saves significant energy costs when replacing traditional metal halide sources. Its energy-efficient LEDs have an expected service life of more than 20 years, which eliminates frequent lamp and ballast replacements associated with traditional technologies. Cost effective, flexible, and always in stock - TWR LED is the choice for distributors and contractors alike.

 

 

 

Read More

 

 

SICK SIM10xxAs part of the SICK AppSpace eco-system, the programmable SIM10xx Sensor Integration Machines offer multiple sensor data acquisition and fusion processes, thereby providing space for new application solutions. The acquired data is processed and visualized for important information, for example quality control or process analysis. In addition, the IoT gateway functions enable connection from the edge to the cloud via the Internet in the context of Industry 4.0. The SIM10xx products feature a powerful processor and Ethernet interfaces for cameras and LiDAR sensors. Other sensors can be integrated via IO-Link, for instance for distance and height measuring purposes.

 

Read More

 

Peers & Profiles

  • Prev
For the second consecutive year, Paul Hannania was among the 162 professionals and apprentices to ...
Alexander Couckuyt, Director of Operations for Southwire Canada, spent the majority of his ...
Stephanie Medeiros leads ABB Canada’s Electric Vehicle Charging Infrastructure team, as well ...
Electrical Industry Canada had the pleasure of interviewing Matt Davis of Newfoundland Power, ...
An electrician by trade, Daniel Lacovetsky is the founder and President of Powertec Electric, an ...
Mike Morneau began his professional career in graphic arts after earning a Bachelor of Technology ...
AimLite offers a vast choice of lighting lines to facilitate any lighting project’s needs. ...
John Krill has been in the energy and construction industries for 35-years, now he serves as Canem ...
Ali Heighton is the Program Coordinator for IBEW Local 37 who has found success as a young ...
Flextherm was founded in 1991 by current company President, Philippe Charron. For more than 25 ...

 

Stephanie MedeirosBy Blake Marchand

Stephanie Medeiros leads ABB Canada’s Electric Vehicle Charging Infrastructure team, as well as transit bus charging in the United States and Canada. She has been with ABB in various positions for 10 years, compiling a diverse skill set that includes work all over the world.

After receiving a degree in Electrical Engineering from McGill University, Medeiros got her start in the industry out of school volunteering with the Canadian government as an electrical engineering intern, where she travelled to Peru to help improve their water treatment infrastructure. 

Read More

 

 

Copper $US Dollar price per pound

Kerrwil Publications

538 Elizabeth Street, Midland,Ontario, Canada L4R2A3 +1 705 527 7666
©2019 All rights reserved

Use of this Site constitutes acceptance of our Privacy Policy (effective 1.1.2016)
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of Kerrwil