Weighing Your Options for Simple Motor Control

Rockwell

July 31, 2019

Smarter, easier, cleaner…

When a person looks at how everything has changed over time, it is amazing.  Some things have changed for convenience, some out of necessity.  Sometimes for both reasons.  In the case of motor starting, it is both.

A long, long, time ago, motors were started by a contactor closure on the line controlled by energizing or de-energizing a coil. Simple on-off push button control.  Worked great for small and large motors alike.

As time passed, other methods of motor control emerged which included utilizing variable frequency drives and soft starters. This added more control of the starting, run time and stopping of the motor.

Doing so offers the reduction of mechanical wear and tear of the system. Of course, the energy savings when starting or reducing current during runtime is a bonus. Everyone likes to conserve energy and save money!

What is the most efficient way of running starter, with the least amount of heat loss? Across the contacts of a contactor. When the contactor is closed, current passes through the now connected busbars. No electronic components generate heat.

Where is this a benefit? Bypassing a soft starter while at speed is an example. Using a bypass contactor while at speed will enable the silicon-controlled rectifier (SCR) to be gated off, producing lower heat.

There are times when a purely solid state device is desired, for example in a high vibration or dirty environment. For those situations, solid state devices are desired. For the rest of the applications, a bypass contactor would be perfect!

What about just starting a load with simple on/off control or in an emergency… say, an application needs to be energized quickly and with little concern about wear and tear. For example, emergencies such as control of town flooding. In those cases, contactors are still very viable. So what are your options for closing a contactor?

As stated earlier, energizing a coil from a control power source connected to simple push buttons will perform the on/off control. A maintained button or two-position switch, used mainly in two-wire control, will hold the coil energized. The coil will be de-energized when the button is pushed again and the voltage to the coil is removed. Of course, the push button contacts have to be rated for the voltage and the current of the coil to which they are connected.

A momentary button (normally open) in combination with an auxiliary contact, is used to energize the coil and make a hold-in contact to maintain the circuit. When another momentary button (normally closed) is pressed, this will open the hold in contact, remove power to the coil, and the motor will stop. This is 3-wire control. Again, contacts are rated for the current of the coil.

Some wiring of components will have to take place, as you can see. Is there a way with less push buttons and wiring to accomplish the same thing?

Well, what about using a programmable logic controller, also known as a PLC, output to control a contactor coil? Control can be accomplished by utilizing the outputs and simple coding of the PLC instead of using external push buttons.

Utilizing a contactor PLC input to control the contactor would free up space traditionally needed for push buttons, etc.  In addition, a PLC that is most likely already in the system controlling other applications could be easily utilized for the control, thereby saving valuable panel space.

Using PLC control reduces the need to have push button contacts rated for large inrush current for coils of larger contactors. The PLC control is typically in the mA range, while the hold-in current and associated inrush current would be seen by the control voltage source and would be much higher.

What about the control voltage itself? Does it have to match the PLC input voltage? Well, the PLC input voltage typically does not match the coil voltage, say, 24 VDC for the PLC input. A person could have coil voltage of 120 VAC, and have the coil controlled by the 24 VDC PLC input.

Just like an interposing relay would behave. But, in this case it would be built into the coil. Control voltage would be different from the voltage being controlled.

Every application is different, so which method provides the best fit and function? Push button or PLC control?

To find out how the new contactors from Allen-Bradley can assist with your contactor needs, contact your local Rockwell Automation sales representative.

For more information, visit HERE.

Related Articles


Latest Articles

  • Guide to the Canadian Electrical Code, Part 1[i], 26th Edition– A Road Map: Section 56

    Guide to the Canadian Electrical Code, Part 1[i], 26th Edition– A Road Map: Section 56

    February 6, 2026 By William (Bill) Burr The Code is a comprehensive document. Sometimes it can seem quite daunting to quickly find the information you need. This series of articles provides a guide to help users find their way through this critical document. This is not intended to replace the notes in Appendix B or Read More…

  • 3D Printing: Inside Lighting’s Next Revolution

    February 5, 2026 While 3D printing in mass production was once a dream, advancements in the technology have moved it more into the mainstream. The technique, which is also referred to as additive manufacturing, has rapidly evolved from a niche prototyping tool into a transformative production method for many sectors, including the lighting industry. As Read More…

  • Microgrids & Power Quality: Designing Resilient, Clean Facility Power

    Microgrids & Power Quality: Designing Resilient, Clean Facility Power

    February 5, 2026 In an era of extreme weather, aging infrastructure, and ever‑rising energy demands, many facility managers are rethinking their relationship with the grid. Microgrids offer a way to take control and operate autonomously when necessary. A microgrid is more than just backup, when designed properly, it becomes a platform for resiliency, efficiency, and Read More…

  • ITC 101: Understanding NEMA Ratings for Electrical Enclosures

    ITC 101: Understanding NEMA Ratings for Electrical Enclosures

    February 5, 2026 Understanding NEMA Ratings for Electrical Enclosures NEMA Ratings are an essential classification system used across North America to define the environmental and mechanical protection provided by electrical enclosures. Developed by the National Electrical Manufacturers Association (NEMA), these ratings help engineers, installers, and specifiers identify the appropriate enclosure type for industrial, commercial, and outdoor Read More…


Changing Scene

  • Lighting What’s Next: Stanpro Celebrates 65 Years

    Lighting What’s Next: Stanpro Celebrates 65 Years

    February 6, 2026 “We didn’t get here by standing still. For 65 years, we’ve shaped how we think, how we design, and what responsibility means,” the company said in a LinkedIn post. “Today, that thinking takes a new form. Not to change who we are, but to express our evolution more clearly. This is Stanpro, Read More…

  • Housing Priorities on Track in New Brunswick, but More Work to do: Hickey

    Housing Priorities on Track in New Brunswick, but More Work to do: Hickey

    February 6, 2026 Efforts to support the creation of new affordable housing and reduce chronic homelessness are on track, but there is still lots of work to do, according to David Hickey, the minister responsible for the New Brunswick Housing Corporation. New data indicates progress has been made on three key government priorities related to Read More…

  • BJ Electric is now Bernie’s Electric Supplies Ltd

    BJ Electric is now Bernie’s Electric Supplies Ltd

    February 6, 2026 BJ Electric had been teasing a major announcement on their social media recently, before finally announcing last week they have rebranded as Bernie’s Electric Supplies Ltd, a nod to the company’s founder and legacy. “BJ Electric Supplies is now Bernie’s Electric Supplies—in honor of our founder, Bernard Joseph Thompson, and the values Read More…

  • The Government of Canada Introduces the Build Canada Homes Act

    The Government of Canada Introduces the Build Canada Homes Act

    February 6, 2026 The Government of Canada has introduced the Build Canada Homes Act, legislation that will establish Build Canada Homes as a Crown corporation whose mandate will be dedicated to building affordable housing in communities across the country. As Canada’s affordable housing builder, this legislation will equip Build Canada Homes with the necessary tools to Read More…