Will Controls Be Key to Circadian Lighting?

Lighting

June 28, 2021

By Craig DiLouie

While “circadian lighting” varies in definition, it generally refers to design that uses intensity and spectrum of light for a non-visual effect — namely, to support regulation of circadian rhythms. A new study suggests that by enabling intensity and spectral adjustment and optimizing exposure based on time of day, designers and owners can minimize the energy trade-off imposed by associated typically much higher light levels. This would entail use of an advanced lighting control system capable of scheduled dimming and perhaps spectral emission adjustment.

Circadian lighting, or biologically effective lighting, is the culmination of decades of research, though as a design practice it is new to the lighting industry. As such, it’s evolving as ongoing research is incorporated. In the meantime, the WELL Building Standard V.2, UL Design Guideline 24480, and the Collaborative for High-Performance Schools (CHPS) Core Design Criteria 3.0 all provide lighting design recommendation and goalposts for circadian lighting implementation.

In some cases, the guidelines significantly vary, either in the primary metric used or in the target values. The primary metrics used in these guidelines are equivalent melanopic flux (EML) and circadian stimulus (CS). As an example of variation in target values, at the time the study was published, the WELL Education Pilot recommended EML ≥ 125 m-lux as an appropriate stimulus four hours per day, while CHPS recommended that EML ≥ 250 m-lux was needed. As a result, it is difficult to say what “effective implementation” truly means, as again the guidelines vary and continue to evolve as new research becomes available and is incorporated.

Meanwhile, a key question in making these guidelines actionable is the potential impact on energy use, as they may pose significant increases in indoor light levels.

This was the focus of a new study by the Pacific Northwest National Laboratory (PNNL), which evaluated energy use in simulated designs attempting to comply with the guidelines. Funded by the U.S. Department of Energy, the study found significant increases in indoor light levels and associated energy consumption, suggesting an energy tradeoff in realizing circadian lighting goals.

PNNL modeled an open office and classroom, varying light output, spectral emission, light distribution, task orientation, duration of stimulus exposure, and more in a series of simulations totaling 45 unique conditions. The researchers determined that current IES task light level recommendations did not satisfy EML and CS targets for either office or classroom environments.

Lighting

“In some cases, meeting the circadian metric recommendations required an average illuminance that was more than double the IES recommendations, which may negatively affect lighting quality and increase energy use,” noted the study’s authors in their report. Satisfying circadian metric recommendations in some cases also required correlated colour temperatures (CCTs) much higher than typically used in open offices and classrooms.

Overall, PNNL estimated a 10-100%increase in annual energy use depending on the number of hours per day the circadian guideline is met. The more conservative energy estimates, closer to 10-15%, involved limiting duration of circadian stimulus to four hours per day, which would most effectively be implemented using an advanced lighting control system providing what is sometimes referred to as “light showers.”

Tunable-white offers utility for circadian stimulus but presents its own trade-offs of increased complexity and modestly higher energy consumption. Another option to reduce the required quantity of electric light is daylight, though that has its own challenges, notably variability in daylight availability.

So will lighting controls be key to unlocking the potential of circadian lighting? As again the field is evolving, this remains to be seen. The study authors noted that the energy trade-off cannot be fully expressed until circadian lighting metrics and effective stimulus delivery are better understood.

As circadian lighting may require higher indoor light levels, however, advanced controls are certainly well positioned for their ability to automatically adjust intensity and spectrum based on time of day.

As shown by this study, limiting the duration of circadian stimulus by adjusting intensity and spectrum can support circadian lighting implementations while minimizing the energy trade-off. As such, lighting controls will be considered along with other factors in future research that may be undertaken to explore the trade-off and how it can be mitigated. And lighting controls should be considered when seeking to implement current circadian lighting guidelines.

Read the study here www.energy.gov/sites/prod/files/2020/08/f77/ssl-safranek-etal-2020_EnergyBuildings_energy-impact.pdf.

Craig DiLouie, L.C., is a lighting industry journalist, analyst and marketing consultant. Learn more at ZINGinc.com http://www.zinginc.com/  and LightNOWblog.com.​

Published with the permission of Lighting Controls Association.

Related Articles


Latest Articles

  • Take the Lesson

    Take the Lesson

    September 2, 2024 By Keith Sones, seasoned utility industry executive “I really don’t want to do this.” “You have to Keith. You have no choice. You can’t leave him hanging” replied my wife. I stared at the phone like a child looks at liver on their plate. They know you have to eat it but also… Read More…

  • Quebec Drives the Growth in Residential Building Construction in June, 2024

    Quebec Drives the Growth in Residential Building Construction in June, 2024

    Investment in building construction grew 2.8% to $21.4 billion in June, after a slight increase of 0.8% in May. These increases partly reflect April’s record high of $13.4 billion in total building permits value, since investment levels for a given period are driven by permits issued in prior months. The June increase in investment in building construction was primarily… Read More…

  • Western Memorial Regional Hospital Sets New Infrastructure Precedent and Receives LEED Silver Certification 

    Western Memorial Regional Hospital Sets New Infrastructure Precedent and Receives LEED Silver Certification 

    August 16, 2024 The new Western Memorial Regional Hospital in Corner Brook is home to Canada’s largest geothermal system, which has set a precedent for modern infrastructure for both Newfoundland and Labrador and North America. The geothermal field is approximately 600 feet below the hospital’s parking lot, and provides 100 per cent of the ground… Read More…

  • Brightening Communities: LED Technology in Action

    Brightening Communities: LED Technology in Action

    August 15, 2024 By Alex Price, Brand & Planning Manager, Current LightingTechnical Contributor: Gary Steinberg, Senior System Manager (Outdoor LED Fixtures), Current Lighting As the landscape of Canadian cities continues to evolve, the importance of outdoor lighting cannot be overstated. From enhancing public safety to promoting economic activity and fostering a sense of community, well-planned… Read More…


Changing Scene

  • Schneider Electric Launches SMART Buildings Division to Drive Sustainable Building Innovation in Canada

    Schneider Electric Launches SMART Buildings Division to Drive Sustainable Building Innovation in Canada

    Schneider Electric is transforming its Digital Buildings business in Canada with the launch of the SMART Buildings Division. This evolution marks a strategic move to deliver comprehensive solutions and services that support building owners and operators in achieving their decarbonization and sustainability goals. The demand for smart buildings is surging, driven by a global shift… Read More…

  • Introducing Alan Bearden as Interim President of Southwire Canada

    Introducing Alan Bearden as Interim President of Southwire Canada

    September 4, 2024 Southwire Canada is pleased to announce that Alan Bearden has been appointed Interim President. In this role, Alan will provide leadership and guidance for Southwire’s Canada-based organization, ensuring continuity and driving growth during this transitional period. Alan Bearden brings a wealth of experience to the position, having joined Southwire in 2008. Over… Read More…

  • A Partnership Between Electromag Graybar Canada and Phoenix Contact

    A Partnership Between Electromag Graybar Canada and Phoenix Contact

    September 3, 2024 Electromag Graybar Canada, a pioneer in industrial automation solutions and pneumatic products, is excited to announce a partnership with Phoenix Contact, a global leader in electrification, networking, and industrial automation. This collaboration, which initially began in the Langley and Ontario branches, is now expanding to Quebec. The alliance aims to provide cutting-edge… Read More…

  • Sonepar Announces the Retirement of William (Bill) C. Smith, Electrozad Director of Transitional Business

    Sonepar Announces the Retirement of William (Bill) C. Smith, Electrozad Director of Transitional Business

    September 2, 2024 William (Bill) C. Smith, Director, Transitional Business of Electrozad Supply Company Limited announced his retirement as of August 30th, 2024 after 49 years of leadership. Bill began his electrical career working part-time at Electrozad Supply while completing a Sales & Marketing Program at St. Clair College.  After his first full-time position in… Read More…