MRI Scanning Assists with Next Generation Battery Design

April 29, 2020

Magnetic resonance imaging (MRI) can provide an effective way of supporting the development of the next generation of high-performance rechargeable batteries, according to research led by the University of Birmingham.

The technique, which was developed to detect the movement and deposition of sodium metal ions within a sodium battery, will enable faster evaluation of new battery materials, and help to accelerate this type of battery’s route to market.

Sodium batteries are widely recognised as a promising candidate to replace lithium ion batteries, currently widely used in devices such as portable electronics and electric vehicles. Several of the materials required to produce lithium ion batteries are critical or strategic elements and, therefore, researchers are working to develop alternative and more sustainable technologies.

Although sodium appears to have many of the properties required to produce an efficient battery, there are challenges in optimising the performance. Key amongst these is understanding how the sodium behaves inside the battery as it goes through its charging and discharging cycle, enabling the points of failure and degradation mechanisms to be identified.

A team, led by Dr Melanie Britton in the University of Birmingham’s School of Chemistry, has developed a technique, with researchers from Nottingham University, that uses MRI scanning to monitor how the sodium performs in operando.

The research team also included scientists from the Energy materials group in the University of Birmingham’s School of Metallurgy and Materials, and from Imperial College London. Their results are published in Nature Communications.

This imaging technique will enable scientists to understand how the sodium behaves as it interacts with different anode and cathode materials. They will also be able to monitor the growth of dendrites – branch-like structures that can grow inside the battery over time and cause it to fail, or even catch fire.

“Because the battery is a sealed cell, when it goes wrong it can be hard to see what the fault is,” explains Dr Britton. “Taking the battery apart introduces internal changes that make it hard to see what the original flaw was or where it occurred. But using the MRI technique we’ve developed, we can actually see what’s going on inside the battery while it is operational, giving us unprecedented insights into how the sodium behaves.”

This technique gives us information into the change within the battery components during operation of a sodium ion battery, which are currently not available to us through other techniques. This will enable us to identify methods for detecting failure mechanisms as they happen, giving us insights into how to manufacture longer life and higher performing batteries.

The techniques used by the team were first designed in a collaboration with researchers at the Sir Peter Mansfield Imaging Centre at University of Nottingham which was funded by the Birmingham-Nottingham Strategic Collaboration Fund. This project aimed to develop MRI scanning of sodium isotopes as a medical imaging technique and the team were able to adapt these protocols for use in battery imaging. The development of novel materials and analytical characterisation is a primary focus of the Birmingham Centre for Energy Storage and Birmingham Centre for Critical Elements and Strategic Materials within the Birmingham Energy Institute.

Source

Related Articles


Latest Articles


Changing Scene

  • Intralec Named New Sales Agency Partner for IDEAL Electrical in Central & Southwestern Ontario

    Intralec Named New Sales Agency Partner for IDEAL Electrical in Central & Southwestern Ontario

    July 7, 2025 Intralec Electrical Products is proud to announce our new partnership with IDEAL Electrical as their sales agency for the Central & Southwestern Ontario regions. As a Canadian manufacturer with over 60 years of experience producing quality products—many of which, like the Can-Twist wire connector and Yellow 77 lubricant, are made in Ajax,… Read More…

  • City of Winnipeg Continues to Improve Online Permits System

    City of Winnipeg Continues to Improve Online Permits System

    July 4, 2025 The City of Winnipeg has launched an improved Permits Online web portal. This upgrade aims to make the permit process more convenient for customers. Permits Online is a one-stop shop to manage the permit process. Now, the web portal is easier to use because customers can navigate it using their mobile device. The portal… Read More…

  • Schneider Electric Launches Chapter 3 of Sustainability School

    Schneider Electric Launches Chapter 3 of Sustainability School

    July 4, 2025 Schneider Electric, the leader in the digital transformation of energy management and automation, has launched Chapter 3 of its online Sustainability School, a free training program designed to empower its channel ecosystem partners to become leaders in sustainability. This chapter will focus on teaching businesses how to decarbonize and unlock the competitive… Read More…

  • United Chargers Launches Grizzl-E Club Charger-as-a-Service Subscription Model

    United Chargers Launches Grizzl-E Club Charger-as-a-Service Subscription Model

    July 4, 2025 United Chargers Inc., known for the Grizzl-E line of EV chargers, announces Grizzl-E Club, a first-of-its-kind charger as a service that provides a free EV Charger and pays drivers back for charging. Grizzl-E Club is designed to make EV ownership more rewarding, accessible, and future-ready. Beginning July 1st, Canadians can join the Grizzl-E… Read More…