MRI Scanning Assists with Next Generation Battery Design

April 29, 2020

Magnetic resonance imaging (MRI) can provide an effective way of supporting the development of the next generation of high-performance rechargeable batteries, according to research led by the University of Birmingham.

The technique, which was developed to detect the movement and deposition of sodium metal ions within a sodium battery, will enable faster evaluation of new battery materials, and help to accelerate this type of battery’s route to market.

Sodium batteries are widely recognised as a promising candidate to replace lithium ion batteries, currently widely used in devices such as portable electronics and electric vehicles. Several of the materials required to produce lithium ion batteries are critical or strategic elements and, therefore, researchers are working to develop alternative and more sustainable technologies.

Although sodium appears to have many of the properties required to produce an efficient battery, there are challenges in optimising the performance. Key amongst these is understanding how the sodium behaves inside the battery as it goes through its charging and discharging cycle, enabling the points of failure and degradation mechanisms to be identified.

A team, led by Dr Melanie Britton in the University of Birmingham’s School of Chemistry, has developed a technique, with researchers from Nottingham University, that uses MRI scanning to monitor how the sodium performs in operando.

The research team also included scientists from the Energy materials group in the University of Birmingham’s School of Metallurgy and Materials, and from Imperial College London. Their results are published in Nature Communications.

This imaging technique will enable scientists to understand how the sodium behaves as it interacts with different anode and cathode materials. They will also be able to monitor the growth of dendrites – branch-like structures that can grow inside the battery over time and cause it to fail, or even catch fire.

“Because the battery is a sealed cell, when it goes wrong it can be hard to see what the fault is,” explains Dr Britton. “Taking the battery apart introduces internal changes that make it hard to see what the original flaw was or where it occurred. But using the MRI technique we’ve developed, we can actually see what’s going on inside the battery while it is operational, giving us unprecedented insights into how the sodium behaves.”

This technique gives us information into the change within the battery components during operation of a sodium ion battery, which are currently not available to us through other techniques. This will enable us to identify methods for detecting failure mechanisms as they happen, giving us insights into how to manufacture longer life and higher performing batteries.

The techniques used by the team were first designed in a collaboration with researchers at the Sir Peter Mansfield Imaging Centre at University of Nottingham which was funded by the Birmingham-Nottingham Strategic Collaboration Fund. This project aimed to develop MRI scanning of sodium isotopes as a medical imaging technique and the team were able to adapt these protocols for use in battery imaging. The development of novel materials and analytical characterisation is a primary focus of the Birmingham Centre for Energy Storage and Birmingham Centre for Critical Elements and Strategic Materials within the Birmingham Energy Institute.

Source

Related Articles


Latest Articles

  • Industry Optimism and Growth: Looking Back on the Hong Kong International Outdoor and Tech Light Expo

    Industry Optimism and Growth: Looking Back on the Hong Kong International Outdoor and Tech Light Expo

    December 2, 2024 By Elle Bremmer Attracting more than 50,000 buyers from around the world, the 26th Hong Kong International Lighting Fair (Autumn Edition) and the 9th Hong Kong International Outdoor and Tech Light Expo was by all definitions, a success. The twin fair events, which were organized by the Hong Kong Trade Development Council… Read More…

  • What Is Corrosion and Why Does VpCI® Help?

    What Is Corrosion and Why Does VpCI® Help?

    December 2, 2024 Rust is a familiar sight for most of us. Rusty cars, rusty nails, rusty locks, and other forms of corrosion are part of everyday life, causing assets to lose their value and functionality. But while the problem is obvious, the cause and the solution are less apparent to most. However, understanding the… Read More…

  • IHSA: Workplace Mental Health Toolkits

    IHSA: Workplace Mental Health Toolkits

    December 1, 2024 IHSA is committed to supporting employers and workers with their occupational health and safety needs. That includes psychological health and safety—a growing and critically important area for workplaces to address. In the sections below, you will find tools, resources, education, and supports from IHSA and our health and safety system partners. They… Read More…

  • New Research on Smart Home Trends & Technology Adoption

    New Research on Smart Home Trends & Technology Adoption

    December 1, 2024 Entertainment systems are becoming a common entry point for smart home technology, with 61% of adopters using smart TVs, displays, or speakers. So says a new consumer research report from the Association for Smart Homes & Buildings (ASHB) that explores the perceptions, preferences, pain points, and challenges of residential renters and owners… Read More…


Changing Scene

  • Procore Drives Connected Construction Innovation at Groundbreak 2024

    Procore Drives Connected Construction Innovation at Groundbreak 2024

    December 2, 2024 Procore Technologies wrapped up Groundbreak 2024 last month. Procore is unveiled Resource Management, the industry’s first all-in-one solution for comprehensive labor, equipment and materials tracking and planning, along with new AI-powered Scheduling and Safety tools that enhance efficiency and streamline safety management. “Construction is one of the most complex industries in the world,… Read More…

  • Applications Now Open for Next Round of Onatario Skills Development Fund

    Applications Now Open for Next Round of Onatario Skills Development Fund

    December 1, 2024 The Ontario government has launched the second round of its Skills Development Fund (SDF) Capital Stream, with over $74 million in available funding to build, expand and retrofit training facilities for workers in the trades, including construction, manufacturing, technology and health care. Since the province launched the Skills Development Fund in 2021, Ontario is… Read More…

  • New Alberta Industry Skills Grant

    New Alberta Industry Skills Grant

    December 1, 2024 Alberta’s government continues to find creative ways to help employers find the qualified workers they need, especially in industries experiencing labour shortages. The new Alberta Industry Skills Grant will fund industry-led training in high-demand sectors like aviation, aerospace, construction and tech. Alberta’s government is making $5 million available through a pilot program… Read More…

  • Southwire to Install Solar-Powered EV Charging Systems At their Facilities

    Southwire to Install Solar-Powered EV Charging Systems At their Facilities

    December 1, 2024 Southwire recently installed solar-powered electric vehicle (EV) charging systems at its Corporate Headquarters in Carrollton, GA and Customer Service Center in Fontana, CA.   The company is aiming to install EV charging stations at all manufacturing plants, customer service centers, and large offices over the next several years. The initiative’s goal is… Read More…