The Impact of Arc Flash Events on Photocontrol Longevity in LED Lighting, Part 3

Photocontrol Longevity

Although the extended life of LEDs compared to other lighting solutions is beneficial, it also presents a compatibility challenge with older technology controls, especially with outdoor photocontrols. The rapid change to LED fixtures and luminaires can leave contractors, designers and distributors facing questions they cannot answer. Here are four photocontrol design solutions to minimize the effects of high inrush currents on electronic ballasts.

1. Employ a high-current rated thermal or electromechanical relay (brute force approach)

An electromechanical relay life can be shortened when switching high inrush currents that exceed the relay’s electrical ratings. With high inrush currents, significant electrical sparks can occur during switching, causing pitting and wear on the relay’s contact surface. Relays with high current ratings take these transients more effectively, as they are designed with thicker, more durable conductive materials. Electronic ballast photocontrols with high inrush currents require higher rated relays than what is suggested when considering the steady state current.

2. Implement predictive load transfer switching techniques (cost-effective approach)

The inrush current exposure for relay contacts can be minimized with predictive load transfer switching. One technique, called zero crossing, limits the relay current by monitoring the AC supply voltage curve and timing the switching to occur as the AC voltage level passes through zero volts (See Figure 1). This effective technique extends relay contact life without relying on the rated contact current or the quality of the manufacturer, thus providing a more compact and cost-effective design.

Figure 1: Zero crossing turn-on waveform

LED Control Figure

3. Use photocontrols with solid-state switches (costlier approach)

Semiconductors such as triacs, SCRs, bipolar transistors and MOSFETs may directly switch loads. All are reliable, simple to control, and successfully handle high inrush currents. However, because of their voltage drop (‘on’ resistance), they ineffectively conduct electrical currents for an extended amount of time, generating unwanted heat. Methods to remove this heat increase the size and cost of the control.

4. Use a hybrid solid-state/relay switch design(costly approach)

The use of a hybrid semiconductor relay assisted circuit has proved effective in mitigating the heat rise issue with solid-state switching. However, costs are increased due to a higher component count. This circuit initially switches the load via the semiconductor to tolerate the inrush current, then transfers the current to a relay contact for reduced thermal operation.

Reliable photocontrols performance ratings

Contractors beware. Some manufacturers claim controls are “LED compatible,” but those terms don’t describe the actual performance of the controls over the lifetime of the LED fixture. The importance of supplying electrical contractors with reliable information on photocontrols performance motivated Intermatic to develop a comprehensive testing approach. This provides electrical contractors and distributors with explicit and tested information on the performance of the Intermatic lighting control portfolio with LED lighting to help them make informed decisions.  

Read the Rest of the Series:
The Impact of Arc Flash Events on Photocontrol Longevity in LED Lighting – Part 1
The Impact of Arc Flash Events on Photocontrol Longevity in LED Lighting – Part 2


Source: Intermatic Incorporated, 7777 Winn Road, Spring Grove, IL 60081; 815-675-2321; www.intermatic.com/zerocross. Intermatic’s new line of electronic photocontrols for LED applications successfully utilizes zero crossing techniques to suppress inrush current impact and deliver on the extended lifespan of LED luminaires. As a result, Intermatic offers cost-effective, 8 to 12 year warrantied electronic photocontrols, while providing large inrush current carrying capacities. Lab testing shows the visible reduction of inrush current, which Intermatic has captured on video.

Related Articles


Latest Articles


Changing Scene

  • ECABC 72nd Annual General Meeting & Conference: Houle Electric Wins Inaugural Innovation Award

    ECABC 72nd Annual General Meeting & Conference: Houle Electric Wins Inaugural Innovation Award

    July 2, 2024 ECABC extends a big thank you to all who attended their Conference & 72nd AGM on June 20–21, 2024 at the picturesque Penticton Lakeside Resort & Conference Centre. “It was a blast seeing everyone there!” The Welcome Reception at Poplar Grove Winery provided a great networking opportunity with an incredible view and… Read More…

  • EECOL Electric Announces Acquisition of Independent Electric Supply

    EECOL Electric Announces Acquisition of Independent Electric Supply

    July 2, 2024 EECOL Electric has announced the acquisition Independent Electric Supply of Toronto (Independent). Independent, with its 40 team members, has been serving customers in the Toronto area market since 1921. “EECOL’s customer-first focus aligns perfectly with our values. This partnership represents the joining of two companies that have both been servicing the electrical… Read More…

  • BC Introducing Rebates for Solar Panels and Battery Storage

    BC Introducing Rebates for Solar Panels and Battery Storage

    For the first time, BC Hydro will provide rebates for the installation of rooftop solar and battery-storage systems, making it easier for people and businesses to generate their own electricity, reduce their energy bills and deliver clean energy back to the electricity grid. Read More…

  • 2024 Call for Nominations CAF-FCA Board of Directors

    2024 Call for Nominations CAF-FCA Board of Directors

    June 28, 2024 The Canadian Apprenticeship Forum is now accepting nominations for its Board of Directors. This is a great opportunity for those who want to be involved in setting the organization’s strategic direction and overseeing its work on behalf of Canada’s apprenticeship community. Review the CAF-FCA Board Member Job Description. For the 2024/2025-year CAF-FCA… Read More…