Transformer Short Circuit Considerations

March 9 2016

Short circuits or faults can and do occur on electric power and distribution systems. When a fault occurs on the load side of a transformer, the fault current will pass through the transformer. As components on these systems, transformers need to be able to withstand these fault currents.

Fault currents flowing through transformers are significantly higher than the rated currents of the transformers. In a worst case scenario, the current would be as high as the current that would flow if system voltage was applied to the primary terminals while the secondary terminals are shorted — limited by the transformer impedance only. These currents produce both mechanical and thermal stresses in the transformers.

Photo credit: Hammond Power Solutions

Forces resulting from the currents passing through the transformer act on the conductors. The forces are a function of the peak asymmetrical current (the highest peak value of any cycle of the current), which is usually at its highest during the first half cycle of the fault. The duration of the fault is not normally a concern for mechanical withstand because the peak value of each cycle of the current reduces as the fault persists. The transformer manufacturer needs to ensure these forces do not damage the transformer.

The thermal stress is caused by the high current causing heating in the transformer. Both the RMS symmetrical current magnitude and duration of the fault contribute to the heating of the transformer. The transformer manufacturer needs to ensure the components of the transformer do not become hot enough to be damaged.

General purpose dry type transformers are typically designed to withstand the mechanical and thermal stresses caused by a short circuit occurring on the secondary terminals of the transformer with rated voltage applied to the primary terminals for a maximum of 2 seconds, provided the current does not exceed 25 times rated current. The fault current magnitude is a function of the transformer impedance. The table below shows the fault current for selected impedances and applies to both line currents and phase currents.

 

Transformer Impedance  Fault Current (times rated)
4.0% 25.0
5.0% 20.0
6.0% 16.7
7.0% 14.3
8.0% 12.5

 

The maximum of 25 times rated current is listed so that transformers with an impedance below 4% need only be able to withstand 25 times rated current, although the fault current could be higher than this. It does not mean that all transformers are able to handle a fault current up to 25 times rated current. With rated voltage applied to the primary a transformer impedance above 4% will not allow 25 times rated current to flow.

Many specifications indicate a fault level at the primary terminals of the transformer. Some customers will ask for a transformer to be braced for the primary fault level. A general purpose transformer is suitable to be connected to a system with the specified fault level, but the transformer impedance will limit the fault current through it to well below the available fault level. As an example, the customer requests a 2500 kVA transformer, 13.8 kV delta to 480Y/277 V, 5.75% impedance to be braced for 750 MVA fault level at 13.8 kV. In this case, the available fault current at the primary terminals is 31.4 kA. For a fault on the secondary side of the transformer, the transformer impedance will limit the fault current that flows in the primary to 1.8 kA in the lines and 1.1 kA in the coils — significantly lower than the available fault level. There is no need for the transformer primary conductors to be sized and braced to handle a 31.4 kA fault current.

Some operating conditions need special attention. Some customers specify the transformer to operate continuously with load at higher than rated voltage. If a fault occurs when the transformer is operating at higher than rated voltage, the resulting fault current would be higher than a typical transformer is designed for. This will increase both the forces in the transformer and the heating of the transformer. Some customers specify a fault duration longer than 2 seconds without specifying a higher voltage. This does not affect the forces but does increase the heating in the transformer. In these cases, a special design may be required.

One case in particular requires special attention: transformers directly connected to a generator. When a generator is supplying a load and the load is suddenly disconnected, the output voltage of the generator rises significantly for a short time until the excitation system decreases the voltage. If a fault occurs on the secondary of a transformer at this time, the fault current can be significantly higher than a typical transformer is designed for. Some applications may not have any overcurrent protection between the generator and the transformer primary winding, resulting in an increased duration. In such cases, it is recommended that IEEE C57.116 IEEE Guide for Transformers Directly Connected to Generators be reviewed to determine the short circuit withstand requirement for the transformer.

General purpose transformers have short circuit withstand capabilities that are sufficient for many applications. The transformer manufacturer needs to be informed of cases where a fault could occur on the secondary of the transformer when the transformer is supplied above rated voltage or the fault duration is longer than two seconds to ensure the transformer is suitably designed to withstand the possible secondary faults.


This document was first published as a white paper by Hammond Power Solutions, the largest manufacturer of dry-type transformers in North America. Hammond Power Solutions engineers and manufactures a wider range of custom transformers that are exported globally in electrical equipment and systems. The firm supports solid industries such as oil and gas, mining, steel, waste and water treatment, and wind power-generation.

 

 

Related Articles


Latest Articles

  • Code Question on Section 24 – Patient Care Areas

    Code Question on Section 24 – Patient Care Areas

    July 14, 2025 The rules for the installation of panelboards, circuits, and bonding in Patient Care Area depends on whether the area is designated as either, Basic Care, Intermediate Care or Critical Care. How are these areas defined? Read more on Section 24 — Health care areas Read More…

  • Ontario’s Institutional Component Drives Non-Residential Construction Intentions in May 2025

    Ontario’s Institutional Component Drives Non-Residential Construction Intentions in May 2025

    July 14, 2025 In May, the total value of building permits issued in Canada rose by $1.4 billion (+12.0%) to reach $13.1 billion. The increase in construction intentions was driven by Ontario’s institutional component (+$1.3 billion). On a constant dollar basis (2023=100), the total value of building permits issued in May increased 11.8% from the previous month and was… Read More…

  • Plan Group Partners in Construction of UHN Surgical Tower at Toronto Western Hospital

    Plan Group Partners in Construction of UHN Surgical Tower at Toronto Western Hospital

    July 14, 2025 Plan Group is proud to be a partner in the construction of the UHN Surgical Tower at Toronto Western Hospital. Plan Group will provide work on the project in: Mechanical: Plumbing, HVAC, Controls, Medical GasElectrical: Lighting & Controls, Power Distribution, Emergency Generators, UPSTechnology: Structured Cabling, AV Systems including Digital Signage and IPTV UHN’s 15-storey Surgical… Read More…

  • How Canada Can Equip Workers for a Low-Carbon Future

    How Canada Can Equip Workers for a Low-Carbon Future

    July 14, 2025 The Canadian economy is shifting towards low-carbon industries, and the workforce is shifting with it. New roles are emerging, traditional ones are evolving and the demand for skilled workers is growing fast — particularly in light of the ambitious nation-building agenda the federal government has set out. In the federal Speech from… Read More…


Changing Scene

  • OEL Apprentice Success Project Available Until March 2026

    OEL Apprentice Success Project Available Until March 2026

    July 14, 2025 With renewed funding by Ontario’s Skills Development Fund, the OEL Apprentice Success Project is now available for another year until March 2026. The project is part of OEL’s Employer Engagement Program (EEP) consisting of wage, training, and equipment subsidies for apprentices. These funding opportunities are available to OEL Members and non-Members. For… Read More…

  • EB Horsman Unveils New Mural at Campbell River Branch

    EB Horsman Unveils New Mural at Campbell River Branch

    July 14, 2025 EB Horsman & Son are thrilled to unveil a new mural at their Campbell River branch, painted by the talented Kwakwaka’wakw artist, Adam Lewis. “This stunning piece celebrates Indigenous heritage and our community spirit,” said EB Horsman on LinkedIn. “As we mark 125 years of serving Western Canada and 55 years in… Read More…

  • Glenco Electric Celebrate New Red Seal Team Members

    Glenco Electric Celebrate New Red Seal Team Members

    July 14, 2025 “The Red Seal Journeyman designation is the highest recognition in the trades, and we’re proud to have seen so many of our team members earn it under our watch,” said Glenco Electric on LinkedIn. “At Glenco, we’re big on mentorship and promoting from within. When you combine that with driven, hard-working professionals,… Read More…

  • Canada and Ontario Investing to Improve Energy Efficiency in Province’s Agri-Food Industry

    Canada and Ontario Investing to Improve Energy Efficiency in Province’s Agri-Food Industry

    July 14, 2025 The governments of Canada and Ontario are investing up to $3 million and launching the third intake of the Agricultural Stewardship Initiative (ASI) to help farmers implement projects to improve the energy efficiency of their farming operations. To support the province’s plan to protect Ontario, this funding will help local agriculture, agri-food… Read More…