Secondary Network Arc Flash Case Study

Arcflash

Aug 18, 2019

By Tony Oruga

Network crews were working in an electrical room tasked to install an 800 A disconnect for a temporary service on the network secondary. The 3-spot network was energized at 480 V on the secondary (34.5 kV on the primary) and all three network protectors were closed and serving load. Each network protector installed was a 3000 A, 480 V Eaton CM52 unit equipped with an Arcflash Reduction Maintenance SystemE (ARMS). Prior to performing their work, crews enabled the ARMS function on all three units in the spot. This put all three network protectors in a “hair-trigger” mode, ready to clear any current condition that exceeded 2.5x the nameplate rating.

As part of standard utility work, all procedures were followed in accordance with their specific utility standard practices. The workers had the specified PPE for those specific work conditions. However, as in any work environment, unforeseen events still occur and crews are trained to deal with less than ideal circumstances. During this particular install, the worker lost positive control of the wrench he was using to install 500 kcmil cable to an energized copper bus. This resulted in the wrench hitting the unistrut, which created a path to ground between the unistrut and the live network secondary. The calculated available fault current at the collector bus is 101.2 kA assuming 25 kA symmetrical available fault current on the 34.5 kV primary bus with balanced contribution.

Because the ARMS protection system was enabled as a part of standard working procedure, each CM52 unit interrupted in approximately 1.9 cycles once the 7500 A threshold was met. According to crew reports, the ARMS device activated and cleared the fault before the worker noticed they had made contact with the energized bus. See Figure 1 for a depiction of the network arrangement.

[PLEASE INSERT EIN-34-WhitePaper-2.jpg HERE]

This technology has been proven with substantial test data to support its capability; however, this is the first report of the ARMS system being called to action during a network arc flash event involving real world circumstances that prevented severe injury or possible death to the worker. The purpose of this white paper is to share this event with others and help create a safer environment through technology for those working in these applications.

System characteristics

• Utility: Austin Energy
• Location: Austin, TX
• Network size: 3-spot network
• Transformer size: 2000 kVA delta-wye; 7% impedance
• Primary system voltage: 34.5 kV
• Secondary voltage: 480 V
• Network protector size: 3000 A; 480 V
• Network protector type: Eaton CM52
• Available incident energy: approximately 200 cal/cm2 (without ARMS considered) based on system analysis
• Available fault current on 480 V secondary: 101.2 kA (3 x 33.7 kA for parallel contribution)
• CM52 ARMS total clear: 1.9 cycles on average
• CM52 ARMS activation: at 2.5 x 3000 A (nameplate rating) = 7500 A

Go here for additional network protector ARMS technical information.

Tony Oruga is a product and sales manager for Eaton. This article was first published online: https://www.eaton.com/content/dam/eaton/products/utility-and-grid-solutions/network-protector-solutions/secondary-network-arc-flash-case-study-wp024002en.pdf

 

Related Articles


Latest Articles

  • Declines in Ontario and Manitoba Construction Intentions Push Down the Non-Residential Sector

    Declines in Ontario and Manitoba Construction Intentions Push Down the Non-Residential Sector

    December 16, 2024 The total value of building permits issued in Canada decreased by $399.1 million (-3.1%) to $12.6 billion in October. This comes on the heels of a strong September, during which construction intentions rose by $1.3 billion to the second-highest level in the series. Despite the monthly decline in October, the total value of building permits… Read More…

  • Lighting Control Basics for Home Automation

    Lighting Control Basics for Home Automation

    By Matthew Biswas Do your eyes roll when you hear terms like Smart home technology?  Or are you a true believer?  As it turns out controlling electrical devices via low-voltage technology can be easier to implement and use than many of us thought. The Lutron Caseta system uses the internet and Radio Frequency to instantly… Read More…

  • Grounded in Ontario: The Future of Energy Storage Systems

    Grounded in Ontario: The Future of Energy Storage Systems

    December 16, 2024 Technical Advisor Trevor Tremblay explains why following best practices and relying on licensed professionals will ensure a smooth and secure transition when integrating this exciting new technology. Energy Storage Systems (ESS) are revolutionizing the way individuals and businesses manage energy, providing cost-saving opportunities, increased energy reliability, and a pathway toward sustainability. In… Read More…

  • 4 in 5 Canadians See Electrifying Public Transit as Key to Advancing Climate Action, Schneider Electric Survey Finds

    4 in 5 Canadians See Electrifying Public Transit as Key to Advancing Climate Action, Schneider Electric Survey Finds

    December 13, 2024 Schneider Electric has released new survey findings showing Canadians are increasingly concerned about the environmental impact of traditional public transit emissions. According to the survey, 83 per cent of Canadians recognize the need for electrified transit to support a sustainable future and are seeking actionable and innovative solutions to ease the nation’s… Read More…


Changing Scene