Dimming Curves, Part 1

Lighting

Sept 3, 2020

By Steve Mesh

All dimmers are created equal, right? Wrong! All drivers are created equal, right? Wrong!

It’s not sufficient to say that you want fixtures to be “dimmable.” There have always been variations in how different dimmers work, and fluorescent ballasts, and more recently LED drivers. Now this is even more complicated because you can use fixtures that also allow you to change colouration, but that’s a subject that we’ll leave for a subsequent post.

Specificity is the soul of narrative, but it is also the soul of specifying luminaires and lighting controls. It behooves you as a specifier or installer (or anyone else involved in the process of procurement, installation or commissioning) to be specific about your expectations with regard to how the lighting and control equipment works. Let’s talk about dimming and dimming curves, and a variety of attributes that you should consider, inquire about, then specify what you actually want. These include the relationship of the slider position (as in the case of a slide dimmer), measured light output, perceived light output, and even resulting power draw. Who knew that a simple wallbox dimmer could be so complicated?

Non-lighting experts may assume that there’s a direct relationship between the position of a slider (as in the case of a slide wallbox dimmer) and the light level. However, most lighting experts know that some dimmers are designed to compensate for how the eye reacts to changes in light levels. Therefore, a “linear” reduction in the slider’s position on the dimmer may result in what’s called “square-law dimming.” A “linear” dimmer paired with a “logarithmic” (“square-law”) LED driver will give you this result. That’s also true if you pair a “logarithmic” (“square-law”) dimmer with a “linear” driver.

Based on that example, you can see that the result is based on the “input” (let’s say the slider position in the case of a wallbox dimmer) and what the message is that the dimmer sends to the driver. But it is also based on the pairing of the input device (i.e., a wallbox dimmer) with the device it’s controlling (i.e., an LED driver). There are some typical dimming curves that manufacturers tend to use in terms of input and output devices:

1. linear
2. logarithmic (sometimes referred to as “square-law”)
3. “S”

For example, a dimmer with a linear curve in terms of slider position will send a signal to a driver to reduce light output by 50% if you pull the slider down halfway. To the eye, this will appear substantially brighter than 50%. On the other hand, if you pair a linear dimmer with a with a driver that’s designed for square-law (or what is commonly referred to as logarithmic) output, then pulling the slider halfway down will send a signal to the driver to dim to 25% of full output — but it will be perceived by the human eye as 50%. Therefore, in that situation this specific dimmer/driver pairing means that what you perceive matches the slider position. The measured light output, however, does not, nor will the power draw match the slider position.

Linear/linear

A linear/linear combination — meaning a linear dimmer paired with a linear driver — is typically adequate when you’re using dimming largely to achieve energy savings. It’s common for drivers designed primarily for energy savings to be dimmable down to 20% of full output (or in some cases to 10%). These are often marketed as energy-saving products. For example, if the target light level in an office was 40 footcandles on desks, then 20% of that would be 8 footcandles. It’s unlikely that most occupants would want to work with less than 8 footcandles on their desk! Therefore, using a “20%” LED driver is perfectly adequate. Since the point of using these products in that application is mostly to save energy, it’s not really problematic that the perceived light level will not necessarily match the slider position.

Linear/logarithmic

As previously explained, you can pair a linear dimmer with a logarithmic driver, or vice versa. Both combinations accomplish the same thing. These pairings result in what’s typically called “square-law dimming” as previously explained. This provides output that is adjusted based on how the eye perceives light levels — not based on what is read on the light meter. This type of pairing makes better use of the entire range of slider positions, especially at the lower end of the light output range. Obviously, you can now see why it’s important to specify (and verify) what type of dimming curve the dimmer (or lighting control system) puts out, and what type the output device such as an LED driver is designed to provide. If you don’t specify (and then verify) this, how will you know that you are truly getting a linear/logarithmic pairing that will provide square-law dimming? It should also be noted that these are typically referred to as architectural products. As such, they are typically designed to dim to 1% of full output, or in some cases even less.

Because of the square-law nature of correlating measured light output with perceived light output, an energy-saving product designed with a low-end value of 20% would result in a perceived light output of about 45%. There are many architectural situations where that doesn’t cut the mustard. For example, imagine a ballroom where you may want to have a very low level of ambient light, possibly supplemented by other specialized fixtures providing drama, colour, patterns, projections, etc. You would certainly want/need to achieve very low ambient levels that require going way below a 20% measured light value. The same would apply to any space used for audio-visual presentations. It would also make sense for certain rooms in a residential setting — especially the dining room, living room, etc.

Perceived VS. Measured Light

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Image courtesy of Pathway Lighting

Logarithmic/logarithmic

If you pair a logarithmic dimmer with a logarithmic driver (both designed for square-law dimming), you’ll end up with a much more exaggerated curve for the output of the LED fixture. This means that most of the dimming will occur at the top end of the slider travel, and there will be a much larger range of the slider position below that, which will give you lots of control over the lower range of light output. If that’s desirable in a certain space, then you now know that you must specify both logarithmic dimmers as well as drivers that operate according to square-law dimming curves. However, this isn’t typically desirable in most applications.

Linear and Logarithmic

 

 

 

 

 

 

 

 

 

 

 

Image courtesy of EldoLED

Other curves

You can design a dimmer (input device) or driver (output device) to follow specific curves of your own desire. There are in fact other types of curves that various vendors have devised, such as “S” curves, “soft linear” curves, etc. Some theatrical dimming systems and fixtures have other preprogrammed curves as well. These are usually designed to provide more controllability in specific parts of the input (i.e., slider) range. Some theatrical fixtures actually allow you to select the type of dimming curve you want by cycling through options right at the fixture itself. However, manufacturers of architectural products tend to adhere to either linear or logarithmic for both input as well as output devices — and that gives you the kinds of results previously described.

Linear, Square Law, S-Curve and Tungsten

Image courtesy of Rosco

Watch for Part 2 of this article in an upcoming issue.

[IT]Steve Mesh is an award-winning lighting designer who has designed lighting and control systems for a variety of project types (commercial, museums, schools, residential, restaurants, retail, historic, healthcare, etc.). As an educator, he has taught classes and given presentations about lighting and controls across North America and internationally. One of his is developing lighting and lighting controls courses that rely on hands-on and/or interactive content. He has been a repeat speaker at LightFair for many years.

Published with the permission of Lighting Control Association.

Related Articles


Latest Articles

  • EFC: The Voice of Standards and Code Development

    EFC: The Voice of Standards and Code Development

    July 30, 2025 By Electro-Federation Canada Electro-Federation Canada (EFC) plays a vital role in shaping the regulatory and technical landscape of Canada’s electrical and automation sectors. Through active participation on key strategic and technical committees, EFC represents the collective interests of its members and ensures that the development of standards and codes is informed by… Read More…

  • Bold, Programmable Lighting Upgrade Helps Draw Visitors to Chinook Centre in Calgary

    Bold, Programmable Lighting Upgrade Helps Draw Visitors to Chinook Centre in Calgary

    July 30, 2025 Chinook Centre Can Now Brightly Celebrate Local Events, Holidays & Causes with New Thematic Exterior LED Lighting  The CF Chinook Centre (more commonly known as Chinook Centre) was always destined to be a major destination point for Calgary. Opened in 1965, it is conveniently located near the city center and is only 20 minutes from… Read More…

  • Electrical Devices GFCI Safety Outlet Sold at Home Hardware Recalled due to Fire Hazard

    Electrical Devices GFCI Safety Outlet Sold at Home Hardware Recalled due to Fire Hazard

    July 25, 2025 Product: Electrical Devices GFCI Safety Outlet sold at Home Hardware Issue: Consumer products – Fire hazard What to do: Immediately stop using the recalled products, contact Unison Ridge for instructions on how to uninstall and return them to any Home Hardware store for a refund. This recall involves three white coloured models… Read More…

  • Grounded in Ontario: Episode 18 – Meter Bases – Bonding, Safety, and Section 10 Changes

    Grounded in Ontario: Episode 18 – Meter Bases – Bonding, Safety, and Section 10 Changes

    July 24, 2025 ESA Technical Advisor, Trevor Tremblay, reveals how meter bases can go from  simple to seriously risky if installed incorrectly. As code enforcement around meter bases ramps up, contractors must stay sharp, read all rules carefully (especially those “notwithstanding” clauses), and double-check labeling. With the right education and planning, the transition can be… Read More…


Changing Scene

  • BC Hydro Making it Easier and More Affordable to Connect New Homes

    BC Hydro Making it Easier and More Affordable to Connect New Homes

    July 24, 2025 BC Hydro is supporting the construction of new housing developments in growing communities by advancing changes to streamline upgrades and reducing the cost of new customer connections to BC Hydro’s electricity grid. “As communities across B.C. grow, so does the need for essential housing. We are committed to ensuring we’re ready to… Read More…

  • Mitrex Sets Record with Largest BIPV Solar Panel Mural at SunRise Residential in Edmonton

    Mitrex Sets Record with Largest BIPV Solar Panel Mural at SunRise Residential in Edmonton

    July 22, 2025 Building-Integrated Photovoltaics (BIPV) manufacturer, Mitrex proudly announces that its transformative SunRise Residential project in Edmonton, Alberta, has earned the Guinness World Record for the largest solar panel mural globally. This landmark project showcases Mitrex’s innovative BIPV solar panels, blending cutting-edge solar technology with vibrant cultural artistry to redefine sustainable architecture. Sustainable Architecture with BIPV Spanning over 30,000 square feet, the Mitrex eFacade PRO plus… Read More…

  • Nexans Unveils a Cable Made with 100% Recycled Materials

    Nexans Unveils a Cable Made with 100% Recycled Materials

    July 24, 2025 Nexans has reached a major milestone in its sustainability journey by developing a prototype cable made entirely from recycled materials — a first in the company’s history. This innovation combines technical performance, industrial feasibility, and a drastically reduced environmental footprint, marking a decisive step forward in circular economy. A cross-continental success story… Read More…

  • EFC Welcomes New Manufacturer Member: MGM Transformers

    EFC Welcomes New Manufacturer Member: MGM Transformers

    July 24, 2025 Since 1974, MGM Transformers has produced tough and trusted transformers designed to get the job done right. As a leading manufacturer, the company employs a highly experienced and dedicated engineering team that excels in custom designs. MGM Transformers is committed to excellent quality and service, offering industry-leading lead times and exceptional customer service. MGM Transformers specializes… Read More…