Dimming Curves, Part 1

Lighting

Sept 3, 2020

By Steve Mesh

All dimmers are created equal, right? Wrong! All drivers are created equal, right? Wrong!

It’s not sufficient to say that you want fixtures to be “dimmable.” There have always been variations in how different dimmers work, and fluorescent ballasts, and more recently LED drivers. Now this is even more complicated because you can use fixtures that also allow you to change colouration, but that’s a subject that we’ll leave for a subsequent post.

Specificity is the soul of narrative, but it is also the soul of specifying luminaires and lighting controls. It behooves you as a specifier or installer (or anyone else involved in the process of procurement, installation or commissioning) to be specific about your expectations with regard to how the lighting and control equipment works. Let’s talk about dimming and dimming curves, and a variety of attributes that you should consider, inquire about, then specify what you actually want. These include the relationship of the slider position (as in the case of a slide dimmer), measured light output, perceived light output, and even resulting power draw. Who knew that a simple wallbox dimmer could be so complicated?

Non-lighting experts may assume that there’s a direct relationship between the position of a slider (as in the case of a slide wallbox dimmer) and the light level. However, most lighting experts know that some dimmers are designed to compensate for how the eye reacts to changes in light levels. Therefore, a “linear” reduction in the slider’s position on the dimmer may result in what’s called “square-law dimming.” A “linear” dimmer paired with a “logarithmic” (“square-law”) LED driver will give you this result. That’s also true if you pair a “logarithmic” (“square-law”) dimmer with a “linear” driver.

Based on that example, you can see that the result is based on the “input” (let’s say the slider position in the case of a wallbox dimmer) and what the message is that the dimmer sends to the driver. But it is also based on the pairing of the input device (i.e., a wallbox dimmer) with the device it’s controlling (i.e., an LED driver). There are some typical dimming curves that manufacturers tend to use in terms of input and output devices:

1. linear
2. logarithmic (sometimes referred to as “square-law”)
3. “S”

For example, a dimmer with a linear curve in terms of slider position will send a signal to a driver to reduce light output by 50% if you pull the slider down halfway. To the eye, this will appear substantially brighter than 50%. On the other hand, if you pair a linear dimmer with a with a driver that’s designed for square-law (or what is commonly referred to as logarithmic) output, then pulling the slider halfway down will send a signal to the driver to dim to 25% of full output — but it will be perceived by the human eye as 50%. Therefore, in that situation this specific dimmer/driver pairing means that what you perceive matches the slider position. The measured light output, however, does not, nor will the power draw match the slider position.

Linear/linear

A linear/linear combination — meaning a linear dimmer paired with a linear driver — is typically adequate when you’re using dimming largely to achieve energy savings. It’s common for drivers designed primarily for energy savings to be dimmable down to 20% of full output (or in some cases to 10%). These are often marketed as energy-saving products. For example, if the target light level in an office was 40 footcandles on desks, then 20% of that would be 8 footcandles. It’s unlikely that most occupants would want to work with less than 8 footcandles on their desk! Therefore, using a “20%” LED driver is perfectly adequate. Since the point of using these products in that application is mostly to save energy, it’s not really problematic that the perceived light level will not necessarily match the slider position.

Linear/logarithmic

As previously explained, you can pair a linear dimmer with a logarithmic driver, or vice versa. Both combinations accomplish the same thing. These pairings result in what’s typically called “square-law dimming” as previously explained. This provides output that is adjusted based on how the eye perceives light levels — not based on what is read on the light meter. This type of pairing makes better use of the entire range of slider positions, especially at the lower end of the light output range. Obviously, you can now see why it’s important to specify (and verify) what type of dimming curve the dimmer (or lighting control system) puts out, and what type the output device such as an LED driver is designed to provide. If you don’t specify (and then verify) this, how will you know that you are truly getting a linear/logarithmic pairing that will provide square-law dimming? It should also be noted that these are typically referred to as architectural products. As such, they are typically designed to dim to 1% of full output, or in some cases even less.

Because of the square-law nature of correlating measured light output with perceived light output, an energy-saving product designed with a low-end value of 20% would result in a perceived light output of about 45%. There are many architectural situations where that doesn’t cut the mustard. For example, imagine a ballroom where you may want to have a very low level of ambient light, possibly supplemented by other specialized fixtures providing drama, colour, patterns, projections, etc. You would certainly want/need to achieve very low ambient levels that require going way below a 20% measured light value. The same would apply to any space used for audio-visual presentations. It would also make sense for certain rooms in a residential setting — especially the dining room, living room, etc.

Perceived VS. Measured Light

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Image courtesy of Pathway Lighting

Logarithmic/logarithmic

If you pair a logarithmic dimmer with a logarithmic driver (both designed for square-law dimming), you’ll end up with a much more exaggerated curve for the output of the LED fixture. This means that most of the dimming will occur at the top end of the slider travel, and there will be a much larger range of the slider position below that, which will give you lots of control over the lower range of light output. If that’s desirable in a certain space, then you now know that you must specify both logarithmic dimmers as well as drivers that operate according to square-law dimming curves. However, this isn’t typically desirable in most applications.

Linear and Logarithmic

 

 

 

 

 

 

 

 

 

 

 

Image courtesy of EldoLED

Other curves

You can design a dimmer (input device) or driver (output device) to follow specific curves of your own desire. There are in fact other types of curves that various vendors have devised, such as “S” curves, “soft linear” curves, etc. Some theatrical dimming systems and fixtures have other preprogrammed curves as well. These are usually designed to provide more controllability in specific parts of the input (i.e., slider) range. Some theatrical fixtures actually allow you to select the type of dimming curve you want by cycling through options right at the fixture itself. However, manufacturers of architectural products tend to adhere to either linear or logarithmic for both input as well as output devices — and that gives you the kinds of results previously described.

Linear, Square Law, S-Curve and Tungsten

Image courtesy of Rosco

Watch for Part 2 of this article in an upcoming issue.

[IT]Steve Mesh is an award-winning lighting designer who has designed lighting and control systems for a variety of project types (commercial, museums, schools, residential, restaurants, retail, historic, healthcare, etc.). As an educator, he has taught classes and given presentations about lighting and controls across North America and internationally. One of his is developing lighting and lighting controls courses that rely on hands-on and/or interactive content. He has been a repeat speaker at LightFair for many years.

Published with the permission of Lighting Control Association.

Related Articles


Latest Articles

  • Take the Lesson

    Take the Lesson

    September 2, 2024 By Keith Sones, seasoned utility industry executive “I really don’t want to do this.” “You have to Keith. You have no choice. You can’t leave him hanging” replied my wife. I stared at the phone like a child looks at liver on their plate. They know you have to eat it but also… Read More…

  • Quebec Drives the Growth in Residential Building Construction in June, 2024

    Quebec Drives the Growth in Residential Building Construction in June, 2024

    Investment in building construction grew 2.8% to $21.4 billion in June, after a slight increase of 0.8% in May. These increases partly reflect April’s record high of $13.4 billion in total building permits value, since investment levels for a given period are driven by permits issued in prior months. The June increase in investment in building construction was primarily… Read More…

  • Western Memorial Regional Hospital Sets New Infrastructure Precedent and Receives LEED Silver Certification 

    Western Memorial Regional Hospital Sets New Infrastructure Precedent and Receives LEED Silver Certification 

    August 16, 2024 The new Western Memorial Regional Hospital in Corner Brook is home to Canada’s largest geothermal system, which has set a precedent for modern infrastructure for both Newfoundland and Labrador and North America. The geothermal field is approximately 600 feet below the hospital’s parking lot, and provides 100 per cent of the ground… Read More…

  • Brightening Communities: LED Technology in Action

    Brightening Communities: LED Technology in Action

    August 15, 2024 By Alex Price, Brand & Planning Manager, Current LightingTechnical Contributor: Gary Steinberg, Senior System Manager (Outdoor LED Fixtures), Current Lighting As the landscape of Canadian cities continues to evolve, the importance of outdoor lighting cannot be overstated. From enhancing public safety to promoting economic activity and fostering a sense of community, well-planned… Read More…


Changing Scene

  • Schneider Electric Launches SMART Buildings Division to Drive Sustainable Building Innovation in Canada

    Schneider Electric Launches SMART Buildings Division to Drive Sustainable Building Innovation in Canada

    Schneider Electric is transforming its Digital Buildings business in Canada with the launch of the SMART Buildings Division. This evolution marks a strategic move to deliver comprehensive solutions and services that support building owners and operators in achieving their decarbonization and sustainability goals. The demand for smart buildings is surging, driven by a global shift… Read More…

  • Introducing Alan Bearden as Interim President of Southwire Canada

    Introducing Alan Bearden as Interim President of Southwire Canada

    September 4, 2024 Southwire Canada is pleased to announce that Alan Bearden has been appointed Interim President. In this role, Alan will provide leadership and guidance for Southwire’s Canada-based organization, ensuring continuity and driving growth during this transitional period. Alan Bearden brings a wealth of experience to the position, having joined Southwire in 2008. Over… Read More…

  • A Partnership Between Electromag Graybar Canada and Phoenix Contact

    A Partnership Between Electromag Graybar Canada and Phoenix Contact

    September 3, 2024 Electromag Graybar Canada, a pioneer in industrial automation solutions and pneumatic products, is excited to announce a partnership with Phoenix Contact, a global leader in electrification, networking, and industrial automation. This collaboration, which initially began in the Langley and Ontario branches, is now expanding to Quebec. The alliance aims to provide cutting-edge… Read More…

  • Sonepar Announces the Retirement of William (Bill) C. Smith, Electrozad Director of Transitional Business

    Sonepar Announces the Retirement of William (Bill) C. Smith, Electrozad Director of Transitional Business

    September 2, 2024 William (Bill) C. Smith, Director, Transitional Business of Electrozad Supply Company Limited announced his retirement as of August 30th, 2024 after 49 years of leadership. Bill began his electrical career working part-time at Electrozad Supply while completing a Sales & Marketing Program at St. Clair College.  After his first full-time position in… Read More…