Steve Mesh Talks Luminaire-Level Lighting Controls

Controls

Apr 7, 2019

Steve Mesh

“Luminaire-level lighting controls” (LLLCs) — that’s a mouthful of Ls! This relatively new term in the lighting controls industry indicates that every fixture controlled by a networked lighting control system (NLC) incorporates two specific things: 1) a “controller,” and 2) sensors.

Controllers are the components that contain a relay (for turning a fixture on and off) and some method for sending a dimming signal to that fixture. In an NLC, controllers usually communicate with a central server. The server is where things like schedules and other system-wide variables usually reside. A schedule residing in the central server may govern the operation of every fixture in the space. For example, all fixtures in a space may turn on based on a scheduled event that occurs every morning during the work week at 7:00 a.m. They may also turn on only when occupancy is detected by some form of sensor, such as a PIR, ultrasonic or dual-tech occupancy sensor. 

In the past, many occupancy sensors had fairly large coverage patterns, such as 2,000 ft2. For an omnidirectional ceiling-mounted sensor, that translates into a circle with a 50’ diameter, or a 45’ x 45’ square. Let’s say for sake of argument that you’re in an office where each employee has a cubicle that’s 10’ x 10’ – or 100 ft2 per employee. If the NLC has occupancy sensors covering 2,000 ft2, then each sensor could potentially respond to movement/occupancy of up to 20 different people (2,000 ft2 sensor coverage/100 ft2 per employee). If all of the fixtures in that area are assigned to respond to input from that one occupancy sensor, then they will all turn on even if only one person enters the area.

In the new paradigm of “luminaire-level lighting controls,” every fixture has its own controller and sensors. Let’s say that the same office space previously mentioned has a carefully crafted lighting plan where one fixture providing ambient light is associated with each 10’ x 10’ cubicle. If the coverage pattern of the on-board occupancy sensor is small enough, then it may only react to movement/occupancy of someone in that particular cubicle. If an occupancy sensor has a 200 ft2coverage pattern, for example, as opposed to 2,000 ft2 as in the previous example, then it will cover an area that’s roughly 8’ x 8’. For a 10’ x 10’ cubicle in an office space, that’s almost a perfect match. As a result, the fixture in a particular cubicle will likely turn on only when the occupant of that particular cubicle is present. Conversely, someone entering an adjacent cubicle will likely not trigger the fixture-integrated occupancy sensor in your fixture if you are not at your desk.

What is the benefit of this increased “granularity”? Increased energy savings. Plain and simple. Because the cost and size of sensors have dramatically decreased over time, it’s now economical to use luminaire-level lighting controls in an NLC. Almost every NLC manufacturer now offers fixture-integrated sensors and low-amperage controllers. However, most still offer controllers with higher-amperage capacity as well, in the event that you still feel strongly about controlling a group of fixtures together. For example, you might decide that all round LED downlights in a long corridor should turn on at the same time regardless of where someone enters the corridor. Incorporating fixture-integrated controllers and sensors in round, recessed downlights is a less common offering by many manufacturers. So it may in fact be a reasonable decision to control the switching and dimming of all of the downlights in that corridor with one higher-amperage controller, and one or more occupancy sensors. If more than one occupancy sensor is used, then their operation will be “paralleled,” so that someone entering the corridor anywhere along the length will turn all fixtures on.

Other than some specific applications as just mentioned, fixture-integrated (LLLC) deployment of controllers and sensors makes sense in a wide variety of spaces, not just offices. For example, a warehouse deploying an NLC with LLLC (fixture-integrated) controllers and sensors may get a similar energy savings benefit since only fixtures where people are walking or driving vehicles such as forklifts will turn on. 

It’s important to note that you don’t have to think of fixtures only turning full on and full off depending on whether the occupancy sensor detects the presence (or absence) of people. Most NLC systems have options to set specific dimming levels based on occupancy or vacancy. In fact, some energy codes specifically require that fixtures in certain spaces energize to a “partial on” state; for example, “auto on to 50%” (where the occupant would have to manually flip a switch to override the 50% setting and turn lights on to full). Conversely, in certain energy codes, fixtures in spaces such as stairwells can dim upon the sensors detecting “vacancy”, but cannot turn fully off, since a stairwell is a route of emergency egress. By using an NLC that has these types of options in its software — and most currently do — you can comply with energy codes and save energy all at the same time.

Some energy codes are beginning to square with the latest advances in technology, slowly (!!!), but they are. For example, the 2018 version of IECC now contains references to LLLCs. As stated in Craig DiLouie’s LCA post on 7/27/2018:

“Possibly the biggest change in the mandatory controls requirement section is a new choice of two compliance paths. The code now includes an alternative path in which luminaire-level lighting controls (LLLC) are installed alongside manual controls and controls for specific applications such as accent and supplemental task lighting.

“The IECC defines LLLC as a system in which luminaires feature embedded intelligence, occupancy and light sensors, wireless networking capability, and where required local override switching capability. The code requires the luminaire to be independently capable of occupancy sensing, dimming to maintain a desired light level, and configurability including dimming set-points, timeouts, fade rates, sensor sensitivity, and wireless zoning.”

The phrase “light sensors” refers to what are generally called “photosensors.” Many manufacturers use terms such as “daylight sensors,” “ambient light sensors,” and so on. Regardless of what you call them, the cost and size of these components has also come way down over time, similar to occupancy sensors. Therefore, it is now economical for manufacturers to incorporate them into LLLCs as well. This increased granularity may help to reduce energy similar to occupancy sensors, but more importantly it may also help to provide greater uniformity of target illumination. What would happen if, for sake of argument, the dimming signal from a single photosensor commanded fixtures to dramatically increase in light output because a shadow from a column obscured the incident light hitting that photosensor? If that photosensor were assigned to all fixtures in a large area, the light output of all fixtures would increase in response, cancelling out the opportunity for greater energy savings. Conversely, what if a strong but narrow beam of incident light just happened to hit that same photosensor? Then it would command all fixtures in that area to dim, even if most needed to be at higher output to maintain the same target illuminance level. Clearly, individual fixture-integrated (LLLC) photosensors are just as beneficial as fixture-integrated occupancy sensors.

As mentioned, luminaire level lighting controls are now incorporated into some of the latest code versions, such as IECC 2018, as one possible method of code compliance with stringent energy codes. However, in certain areas local utility companies are also incentivizing the deployment of LLLCs as opposed to NLC systems that do not use fixture-integrated components. For example, there has been a big push among utilities in the U.S. northwest for deployment of NLCs with luminaire level lighting controls.

Whether or not the applicable energy code requires LLLCs… or allows them as a possible prescriptive path to compliance… or the local utility incentivizes them… using LLLCs always provides the maximum granularity, and therefore the maximum flexibility, and very likely the maximum energy savings in offices, warehouses and many other space types. Make sure to ask any vendor you are considering if they have components allowing for luminaire level lighting controls.

This article was first published at lightingcontrolsassociation.org/2019/02/04/steve-mesh-talks-luminaire-level-lighting-controls/


Steven Mesh is an award-winning lighting designer who has designed lighting and control systems for a variety of project types (commercial, museums, schools, residential, restaurants, retail, historic, healthcare, etc.). As an educator, he has taught classes and given presentations about lighting and controls across North America and internationally. One of his is developing lighting and lighting controls courses that rely on hands-on and/or interactive content. He has been a repeat speaker at LightFair for eight years.

Related Articles


Latest Articles

  • ESA has Identified Increasing Safety Concern Surrounding Meter Base Installations

    ESA has Identified Increasing Safety Concern Surrounding Meter Base Installations

    April 18, 2025 ESA and EFC are raising awareness on an increasing safety concern the ESA has identified surrounding meter base installations. ESA identified an increase of installed meter bases where the neutral block is isolated from the enclosure. According to OESC Rule 10-210 a bonding conductor must be installed between the meter base and… Read More…

  • Non-residential Construction Investment Continues to Reach Record Highs in January 2025

    Non-residential Construction Investment Continues to Reach Record Highs in January 2025

    April 18, 2025 Overall, investment in building construction rose 1.8% (+$393.7 million) to $22.1 billion in January. The residential sector increased 2.3% to $15.4 billion, while the non-residential sector was up 0.8% to $6.7 billion. Year over year, investment in building construction grew 5.7% in January. On a constant dollar basis (2017=100), investment in building construction increased 1.5% from the previous month to $13.2 billion… Read More…

  • BC Non-Residential Drives Growth, Multi-Family Component Drives Residential Decline in February Building Permits

    BC Non-Residential Drives Growth, Multi-Family Component Drives Residential Decline in February Building Permits

    April 18, 2025 In February, the total value of building permits issued in Canada increased by $371.3 million (+2.9%) to $13.1 billion. Gains in construction intentions were led by British Columbia’s non-residential sector. On a constant dollar basis (2017=100), the total value of building permits issued in February grew 3.2% from the previous month and was up 5.6% on… Read More…

  • Navigating Tariffs: Practical Strategies for ECABC Members

    Navigating Tariffs: Practical Strategies for ECABC Members

    April 18, 2025 Canadian businesses are facing uncertain and unprecedented risks created by tariffs on Canadian goods from the United States. The combination of the economic impact to BC’s economy from these tariffs, and the potential increase in the cost of construction materials and equipment as Canada is forced to respond with retaliatory tariffs, has… Read More…


Changing Scene

  • Ontario Introduces Legistlation to Unlock Trade and Labour Mobility Within Canada

    Ontario Introduces Legistlation to Unlock Trade and Labour Mobility Within Canada

    April 18, 2025 As a next step in its plan to protect Ontario by unleashing the province’s economy, the Ontario government is introducing the Protect Ontario through Free Trade within Canada Act to unlock free trade and labour mobility within Canada. This legislation will, if passed, create new opportunities for job creation and investment attraction, supporting economic… Read More…

  • Ontario, P.E.I. Join Nova Scotia With Legislation to Remove Internal Trade Barriers

    Ontario, P.E.I. Join Nova Scotia With Legislation to Remove Internal Trade Barriers

    April 18, 2025 Prince Edward Island and Ontario have joined the Nova Scotia by introducing reciprocal legislation that will help foster an environment of mutual recognition of goods, services and labour mobility between these provinces. “Leaders across the country are expressing interest in removing trade barriers, and I’m very pleased that P.E.I. and Ontario have… Read More…

  • New Brunswick Signs MOU with Ontario to Reduce Trade and Labour Mobility Barriers

    New Brunswick Signs MOU with Ontario to Reduce Trade and Labour Mobility Barriers

    April 18, 2025 The governments of New Brunswick and Ontario have signed a memorandum of understanding on free trade and labour mobility. “Ontario is New Brunswick’s second-biggest trading partner, and we are excited to be building on the positive momentum to reduce internal trade barriers across Canada,” said Premier Susan Holt. “Today’s signing of this… Read More…

  • EFC Welcomes New Manufacturer Member: MegaResistors Corp.

    EFC Welcomes New Manufacturer Member: MegaResistors Corp.

    April 18, 2025 Founded in 2008, MegaResistors is a proudly Canadian company specializing in the design and production of high-quality power resistors, including grounding resistors, braking resistors and resistive load banks, tailored for demanding industry and mission critical applications. Their extensive line of products helps them meet the needs of the industry, from crane control… Read More…