Managing Security Risks in Smart Lighting Systems, Part 3

Managing Security Risk

Feb 3, 2020

This is the third article of a four-part introductory series on managing security risks in smart lighting systems. In this series, learn about best practices, based on NIST standards and guidelines, for identifying and mitigating cybersecurity risks and threats, as well as implementing cybersecurity controls on an organizational level. The first article introduced the concept of a multi-tiered approach to smart lighting system cybersecurity. The second article focused on two key security control families: access control/identification and authentication. In this third article, we’ll focus on building automation and control system security control families that relate to system and communication protection, and system and information integrity.

A smart lighting system is a base building control system that can also be an important, integral part of a building automation and control system (BACS). At a fundamental level, every type of BACS facilitates the flow of information as well as automated control through connectivity. This information flow reduces operating costs and provides better and more timely information about a building function or asset. BACS are a form of business information system (BIS) and, like any other BIS, can pose potential security threats and risks to the business.

System and communications protection

System and communications protection security control strategies focus on attacks that target the system configuration, system resources, communications channels and private or classified information.

• System partitioning and application separation — one of the easiest ways to protect a smart lighting system is to partition the system into different network segments that separate user functions from system control and management functions. This creates logical and physical boundaries that can be monitored and protected for added security. One common approach is to have a private control network, only accessible to system administrators, that hosts all lighting controllers and management applications, and have a public network that users can access via personal control, web or mobile applications. Within the lighting control network, wired and wireless field bus technology further separates device control from system management traffic so that basic lighting control will still work should there be a management network failure.

• Secure system communication, session management and boundary protection — secure network connections and encryption of data in transit protects from man-in-the-middle attacks trying to gain access to information, as well as malicious or accidental alteration of information during transmission. Connection and session management ensures that sessions are unique and valid only for the duration of use. For example, session cookies with unique identifiers, timeouts, and password protected locks can be used.

• Cryptography and key management — secure control systems use cryptography to protect information, including personally identifiable data, passwords and certificates, while in transit or at rest. As part of the encryption process, the information protected is scrambled and is made readable only by using the matching keys. Also, it is common for secure connections to change the keys periodically. It is good practice to separate the security functions that generate and manage keys from user functions, and store the encryption keys in protected storage areas.

• System resources, denial of service and boundary protection — in case of attacks, malfunction or failure, the smart lighting system should provide a graceful degradation of services by maintaining limited functionality such as failsafe operations and default configuration sets, to prevent catastrophic failure. Firewalls, resources and traffic management functions can identify targeted or accidental denial of service attacks or monitor resource availability. Segregating services creates boundaries that help protect the operation of essential system functions from external influences.

• Remote access, wireless access and access from mobile devices — the system should protect remote, wireless or mobile access to the system using virtual private networks (VPNs), secure wireless access, and secure mobile interfaces. This allows only trusted users to have access to the system.

System and information integrity

It is essential for a system to operate flawlessly and for the integrity of both the system and information to be guaranteed. The following security controls help the system administrator maintain the integrity of the system:

• Malicious code protection — virus and malware scanners protect the system from viruses, Trojan horses, ransomware, backdoor attacks and many other forms of malicious code and malware. They continuously scan the control system for file transfers via network connections or sharable data mediums, and periodically scan the control system’s file system. When threats are detected, files are either quarantined or protected from opening or execution. To remain effective against evolving threats, malicious code protection tools must be updated on a regular basis and only the latest version must be run.

• System monitoring and system-generated events — to detect attacks or unauthorized use, smart lighting systems should notify the operator of any suspicious activity and provide the operator with a history of system activities.  Receiving such information allows an operator to troubleshoot or audit the system and detect current or future problems.

• Software, firmware, and information integrity — it is essential that operators and users trust that the system is running the correct software and firmware, and that neither is accidentally or maliciously altered. The integrity of both can be protected by various integrity checks and functions. For instance, validated digital signatures can be required to execute software and firmware. In the same way, the system needs to check the integrity of critical system and personal information by applying various types of integrity checks.

• Information input validation and error handling — input validation protects the system from accidental or malicious malfunction due to invalid inputs that could result in system or application crashes, system restarts, or system lock ups. It ensures maximum system availability and filters malicious input vectors that could be used to exploit the system. Proper error messages indicate user and system errors. They need to be meaningful enough that a user or system operator can easily understand the error and take proper action to correct the error. However, it is also important that these error messages can’t be used by an attacker to exploit the system.

• Fail-safe procedures — in the case of a system or system component failure, the control system should switch to a known fail-safe state and be able to execute fail-safe procedures. A fail-safe state could be a defined default state, error state, or other state that allows basic system functions to run independently of the failed system components. It is important that these states and procedures protect the safety of the system and its users, as well as the security functions of the system.

• Security function verification — the control system operator needs to trust system security functions. In many cases, control systems provide an integrated verification of these security functions. It is important that the operator or administrator of the system check the critical security functions on a regular basis.

The Encelium Extend Light Management System has been accepted as a secure system by the GSA (General Services Administration), an independent agency of the United States government, and is currently used for smart lighting in government and commercial buildings. Learn more: www.osram.us/ds/products/light-management-systems/encelium/index.jsp.

Part 4, available shortly, will focus on insider threats and more. 
Source https://info.osram.us/blog/smart-lighting-system-security-system-and-communications-protection-strategies

Related Articles


Latest Articles

  • ESA has Identified Increasing Safety Concern Surrounding Meter Base Installations

    ESA has Identified Increasing Safety Concern Surrounding Meter Base Installations

    April 18, 2025 ESA and EFC are raising awareness on an increasing safety concern the ESA has identified surrounding meter base installations. ESA identified an increase of installed meter bases where the neutral block is isolated from the enclosure. According to OESC Rule 10-210 a bonding conductor must be installed between the meter base and… Read More…

  • Non-residential Construction Investment Continues to Reach Record Highs in January 2025

    Non-residential Construction Investment Continues to Reach Record Highs in January 2025

    April 18, 2025 Overall, investment in building construction rose 1.8% (+$393.7 million) to $22.1 billion in January. The residential sector increased 2.3% to $15.4 billion, while the non-residential sector was up 0.8% to $6.7 billion. Year over year, investment in building construction grew 5.7% in January. On a constant dollar basis (2017=100), investment in building construction increased 1.5% from the previous month to $13.2 billion… Read More…

  • BC Non-Residential Drives Growth, Multi-Family Component Drives Residential Decline in February Building Permits

    BC Non-Residential Drives Growth, Multi-Family Component Drives Residential Decline in February Building Permits

    April 18, 2025 In February, the total value of building permits issued in Canada increased by $371.3 million (+2.9%) to $13.1 billion. Gains in construction intentions were led by British Columbia’s non-residential sector. On a constant dollar basis (2017=100), the total value of building permits issued in February grew 3.2% from the previous month and was up 5.6% on… Read More…

  • Navigating Tariffs: Practical Strategies for ECABC Members

    Navigating Tariffs: Practical Strategies for ECABC Members

    April 18, 2025 Canadian businesses are facing uncertain and unprecedented risks created by tariffs on Canadian goods from the United States. The combination of the economic impact to BC’s economy from these tariffs, and the potential increase in the cost of construction materials and equipment as Canada is forced to respond with retaliatory tariffs, has… Read More…


Changing Scene

  • Ontario Introduces Legistlation to Unlock Trade and Labour Mobility Within Canada

    Ontario Introduces Legistlation to Unlock Trade and Labour Mobility Within Canada

    April 18, 2025 As a next step in its plan to protect Ontario by unleashing the province’s economy, the Ontario government is introducing the Protect Ontario through Free Trade within Canada Act to unlock free trade and labour mobility within Canada. This legislation will, if passed, create new opportunities for job creation and investment attraction, supporting economic… Read More…

  • Ontario, P.E.I. Join Nova Scotia With Legislation to Remove Internal Trade Barriers

    Ontario, P.E.I. Join Nova Scotia With Legislation to Remove Internal Trade Barriers

    April 18, 2025 Prince Edward Island and Ontario have joined the Nova Scotia by introducing reciprocal legislation that will help foster an environment of mutual recognition of goods, services and labour mobility between these provinces. “Leaders across the country are expressing interest in removing trade barriers, and I’m very pleased that P.E.I. and Ontario have… Read More…

  • New Brunswick Signs MOU with Ontario to Reduce Trade and Labour Mobility Barriers

    New Brunswick Signs MOU with Ontario to Reduce Trade and Labour Mobility Barriers

    April 18, 2025 The governments of New Brunswick and Ontario have signed a memorandum of understanding on free trade and labour mobility. “Ontario is New Brunswick’s second-biggest trading partner, and we are excited to be building on the positive momentum to reduce internal trade barriers across Canada,” said Premier Susan Holt. “Today’s signing of this… Read More…

  • EFC Welcomes New Manufacturer Member: MegaResistors Corp.

    EFC Welcomes New Manufacturer Member: MegaResistors Corp.

    April 18, 2025 Founded in 2008, MegaResistors is a proudly Canadian company specializing in the design and production of high-quality power resistors, including grounding resistors, braking resistors and resistive load banks, tailored for demanding industry and mission critical applications. Their extensive line of products helps them meet the needs of the industry, from crane control… Read More…