Safety and Risk in Electrical Low-Voltage Installations, Part 3

Safety

 

Sept 17, 2018

By Alfred Mörx

Taking adequate measures when planning and making equipment (e.g., low‐voltage switchgear assemblies) ensures that any risk that remains after the application of protective measures is as low as possible. Parts 1 and 2 explored the relationship between risk and safety, seven reasons for implementing safety precautions, consequential damage, and its costs. Part 3 looks at how employers can meet their responsibilities under workplace health and safety legislation, and six causes of arc faults in low‐voltage switchgear assemblies.

Protecting employees

Legislation defines the safety and health of employees as a responsibility of the employer. Meeting this responsibility involves

1. preventing risks

2. combating risks at source

3. taking into account the “human” factor at work, particularly with regard to workplace design, the choice of work equipment, and the choice of working and production methods, especially with respect to alleviating monotonous work and work at a predetermined work rate

4. adopting best practices

5. eliminating or reducing hazards

6. planning risk prevention with a view to ensuring a coherent linking of technology, work organization, working conditions, social relationships, and impacts on the environment
7. placing collective risk protection above individual risk protection

Point 4 on this list clearly stresses that employers, in their efforts to create safe working conditions, must follow state‐of‐the art technology and the latest insights in the field of work structuring.

Practically every workplace is affected by these requirements, including the layout of the electrical low‐voltage installation and with it the design of the low‐voltage switchgear assemblies and/or the components used in them.

Best practices include incorporating advanced technological processes, facilities and operating modes whose proper functioning is tried or proven.

As a rule, best practices will be further advanced than technical standards and go beyond the standards’ minimum requirements. With regard to planning, constructing and operating low‐voltage switchgear assemblies, employers must consider whether to go beyond the requirements stipulated in recognized rules of engineering when planning and executing the electrical system.

Arc faults in low‐voltage switchgear assemblies

Identifying and responding to potential causes of arc faults can reduce consequential damages and protect employees from injury. For arc faults, here are six possible ignition causes:

• condensation (humidity in the switchgear assembly)
• pollution in the form of foreign deposits on busbars and parts of switchgear
• transient overvoltages following storm and/or switching surges
• premature (unnoticed) ageing of insulating materials following sporadic or thermal overload
• loose or slack connections, defective contact points
• working on parts of the substation

One of the possible consequences of arc faults is the complete destruction of the switchgear assembly.

In this respect, the steel‐sheet housing, due to the high internal pressure from up to 15‐25 t/m2, also becomes a risk for the surroundings and people working there. It is not unusual for side walls, doors, and built‐in appliances to be ejected from the housing of the switchgear assembly under the influence of arc faults. Another possible consequence of arc faults is the emergence and spreading of so‐called electrically ignited fires.

When planning and implementing low‐voltage switchgear assemblies and the low‐voltage installations supplied from them, it is in many cases necessary from a technical protection point of view to examine whether the minimum requirements specified in the generally accepted technical standards are sufficient for actual operation, compare them to best practices, and proceed from there.

Alfred Mörx is the owner of diam‐consult, a consulting engineering office for physics focusing on risk analysis and protective technology in complex technical systems, since 2001. He studied technical physics at the Vienna University of Technology. As an expert for basic electrotechnical safety matters, he has been working in national, European, and international teams in the area of safe electricity application for more than 25 years; www.diamcons.com; am@diamcons.com. This article was previously published as an Eaton white paper: www.eaton.eu/ecm/groups/public/@pub/@europe/@electrical/documents/content/pct_1595882.pdf@electrical/documents/content/pct_1595882.pdf

Read Part 1 and Part 2

 

Related Articles


Latest Articles


Changing Scene

  • Hammond Power Solutions Appoints Linda Nadeau Sanford as Western Regional Sales Manager

    Hammond Power Solutions Appoints Linda Nadeau Sanford as Western Regional Sales Manager

    May 12, 2025 Hammond Power Solutions (HPS), a leader in dry-type transformers and power quality solutions, is pleased to announce the appointment of Linda Nadeau Sanford as the new Western Regional Sales Manager. Linda will play a key part in driving sales and revenue across the Western Canada region. She will oversee territory management, advance… Read More…

  • Susanna Zagar, Ontario Energy Board CEO, Named EHRC’s 2025 Agent of Change

    Susanna Zagar, Ontario Energy Board CEO, Named EHRC’s 2025 Agent of Change

    May 12, 2025 Electricity Human Resources Canada (EHRC) is proud to announce Susanna Zagar (she/her), Chief Executive Officer of the Ontario Energy Board (OEB), as the recipient of the 2025 Agent of Change Award. This recognition celebrates Ms. Zagar’s remarkable leadership and commitment to diversity, equity and inclusion (DEI) in the electricity sector. Since stepping… Read More…

  • AD Reports Huge Jump in Member Sales Through Three Months of 2025

    AD Reports Huge Jump in Member Sales Through Three Months of 2025

    May 12, 2025 AD reports that member sales in the first three months of 2025 increased 23% to a record $24 billion across the group’s 14 divisions and three countries. AD welcomed over 550 new members in the first quarter through both organic growth and the IMARK Electrical merger. AD members also acquired another 10… Read More…

  • Legrand Introduces Wattstopper i3 Building Management Platform

    Legrand Introduces Wattstopper i3 Building Management Platform

    May 12, 2025 Legrand® has announced the launch of the Wattstopper i3 Platform, a next-generation lighting and building intelligence solution powered by KODE Labs, a global leader of advanced smart building technology.  The partnership positions Legrand to lead the lighting controls industry into a new era of unified experiences, seamless integrations, and data-driven control, making it easier… Read More…