Safety and Risk in Electrical Low-Voltage Installations, Part 3

Safety

 

Sept 17, 2018

By Alfred Mörx

Taking adequate measures when planning and making equipment (e.g., low‐voltage switchgear assemblies) ensures that any risk that remains after the application of protective measures is as low as possible. Parts 1 and 2 explored the relationship between risk and safety, seven reasons for implementing safety precautions, consequential damage, and its costs. Part 3 looks at how employers can meet their responsibilities under workplace health and safety legislation, and six causes of arc faults in low‐voltage switchgear assemblies.

Protecting employees

Legislation defines the safety and health of employees as a responsibility of the employer. Meeting this responsibility involves

1. preventing risks

2. combating risks at source

3. taking into account the “human” factor at work, particularly with regard to workplace design, the choice of work equipment, and the choice of working and production methods, especially with respect to alleviating monotonous work and work at a predetermined work rate

4. adopting best practices

5. eliminating or reducing hazards

6. planning risk prevention with a view to ensuring a coherent linking of technology, work organization, working conditions, social relationships, and impacts on the environment
7. placing collective risk protection above individual risk protection

Point 4 on this list clearly stresses that employers, in their efforts to create safe working conditions, must follow state‐of‐the art technology and the latest insights in the field of work structuring.

Practically every workplace is affected by these requirements, including the layout of the electrical low‐voltage installation and with it the design of the low‐voltage switchgear assemblies and/or the components used in them.

Best practices include incorporating advanced technological processes, facilities and operating modes whose proper functioning is tried or proven.

As a rule, best practices will be further advanced than technical standards and go beyond the standards’ minimum requirements. With regard to planning, constructing and operating low‐voltage switchgear assemblies, employers must consider whether to go beyond the requirements stipulated in recognized rules of engineering when planning and executing the electrical system.

Arc faults in low‐voltage switchgear assemblies

Identifying and responding to potential causes of arc faults can reduce consequential damages and protect employees from injury. For arc faults, here are six possible ignition causes:

• condensation (humidity in the switchgear assembly)
• pollution in the form of foreign deposits on busbars and parts of switchgear
• transient overvoltages following storm and/or switching surges
• premature (unnoticed) ageing of insulating materials following sporadic or thermal overload
• loose or slack connections, defective contact points
• working on parts of the substation

One of the possible consequences of arc faults is the complete destruction of the switchgear assembly.

In this respect, the steel‐sheet housing, due to the high internal pressure from up to 15‐25 t/m2, also becomes a risk for the surroundings and people working there. It is not unusual for side walls, doors, and built‐in appliances to be ejected from the housing of the switchgear assembly under the influence of arc faults. Another possible consequence of arc faults is the emergence and spreading of so‐called electrically ignited fires.

When planning and implementing low‐voltage switchgear assemblies and the low‐voltage installations supplied from them, it is in many cases necessary from a technical protection point of view to examine whether the minimum requirements specified in the generally accepted technical standards are sufficient for actual operation, compare them to best practices, and proceed from there.

Alfred Mörx is the owner of diam‐consult, a consulting engineering office for physics focusing on risk analysis and protective technology in complex technical systems, since 2001. He studied technical physics at the Vienna University of Technology. As an expert for basic electrotechnical safety matters, he has been working in national, European, and international teams in the area of safe electricity application for more than 25 years; www.diamcons.com; am@diamcons.com. This article was previously published as an Eaton white paper: www.eaton.eu/ecm/groups/public/@pub/@europe/@electrical/documents/content/pct_1595882.pdf@electrical/documents/content/pct_1595882.pdf

Read Part 1 and Part 2

 

Related Articles


Latest Articles


Changing Scene

  • Saskatchewan Investing in Skills Training

    Saskatchewan Investing in Skills Training

    March 28, 2025 Guided by Building the Workforce for a Growing Economy: the Saskatchewan Labour Market Strategy, the Ministry of Immigration and Career Training is investing more than $117.0 million in programs and services. “We continue to make training available for Saskatchewan people to prepare for the record number of jobs being created by our growing… Read More…

  • New Skilled Trades and Technology Building for the New Saskatchewan Polytechnic Joseph A. Remai Saskatoon Campus Proceeding to Request for Proposals

    New Skilled Trades and Technology Building for the New Saskatchewan Polytechnic Joseph A. Remai Saskatoon Campus Proceeding to Request for Proposals

    March 28, 2025 Three teams are advancing to the next stage of procurement for the new Skilled Trades and Technology building for the Saskatchewan Polytechnic, Joseph A. Remai Saskatoon Campus. Upon procurement completion, the successful proponent will be awarded the design and construction of the new Trades building under a Design-Build agreement.  “This project is… Read More…

  • New Brunswick Legislation Introduced to Support Interprovincial Labour Mobility

    New Brunswick Legislation Introduced to Support Interprovincial Labour Mobility

    March 28, 2025 The New Brunswick government has introduced legislative amendments to improve labour mobility and reduce interprovincial barriers. “With potential tariff-related disruptions and an uncertain economic climate, workers and businesses need the ability to adapt quickly to quickly changing circumstances,” said Jean-Claude D’Amours, acting minister of post-secondary education, training and labour. “A flexible and… Read More…

  • New Brunswick Electric Vehicle Incentive Will End July 1

    New Brunswick Electric Vehicle Incentive Will End July 1

    March 28, 2025 The New Brunswick provincial government will end its Electric Vehicle Incentive Program on July 1. “This rebate program made it possible for many New Brunswickers to buy an electric vehicle during their introduction to the market, and is helping reduce greenhouse gas emissions,” said Finance and Treasury Board Minister René Legacy, who… Read More…