Managing Security Risks in Smart Lighting Systems, Part 3

Managing Security Risk

Feb 3, 2020

This is the third article of a four-part introductory series on managing security risks in smart lighting systems. In this series, learn about best practices, based on NIST standards and guidelines, for identifying and mitigating cybersecurity risks and threats, as well as implementing cybersecurity controls on an organizational level. The first article introduced the concept of a multi-tiered approach to smart lighting system cybersecurity. The second article focused on two key security control families: access control/identification and authentication. In this third article, we’ll focus on building automation and control system security control families that relate to system and communication protection, and system and information integrity.

A smart lighting system is a base building control system that can also be an important, integral part of a building automation and control system (BACS). At a fundamental level, every type of BACS facilitates the flow of information as well as automated control through connectivity. This information flow reduces operating costs and provides better and more timely information about a building function or asset. BACS are a form of business information system (BIS) and, like any other BIS, can pose potential security threats and risks to the business.

System and communications protection

System and communications protection security control strategies focus on attacks that target the system configuration, system resources, communications channels and private or classified information.

• System partitioning and application separation — one of the easiest ways to protect a smart lighting system is to partition the system into different network segments that separate user functions from system control and management functions. This creates logical and physical boundaries that can be monitored and protected for added security. One common approach is to have a private control network, only accessible to system administrators, that hosts all lighting controllers and management applications, and have a public network that users can access via personal control, web or mobile applications. Within the lighting control network, wired and wireless field bus technology further separates device control from system management traffic so that basic lighting control will still work should there be a management network failure.

• Secure system communication, session management and boundary protection — secure network connections and encryption of data in transit protects from man-in-the-middle attacks trying to gain access to information, as well as malicious or accidental alteration of information during transmission. Connection and session management ensures that sessions are unique and valid only for the duration of use. For example, session cookies with unique identifiers, timeouts, and password protected locks can be used.

• Cryptography and key management — secure control systems use cryptography to protect information, including personally identifiable data, passwords and certificates, while in transit or at rest. As part of the encryption process, the information protected is scrambled and is made readable only by using the matching keys. Also, it is common for secure connections to change the keys periodically. It is good practice to separate the security functions that generate and manage keys from user functions, and store the encryption keys in protected storage areas.

• System resources, denial of service and boundary protection — in case of attacks, malfunction or failure, the smart lighting system should provide a graceful degradation of services by maintaining limited functionality such as failsafe operations and default configuration sets, to prevent catastrophic failure. Firewalls, resources and traffic management functions can identify targeted or accidental denial of service attacks or monitor resource availability. Segregating services creates boundaries that help protect the operation of essential system functions from external influences.

• Remote access, wireless access and access from mobile devices — the system should protect remote, wireless or mobile access to the system using virtual private networks (VPNs), secure wireless access, and secure mobile interfaces. This allows only trusted users to have access to the system.

System and information integrity

It is essential for a system to operate flawlessly and for the integrity of both the system and information to be guaranteed. The following security controls help the system administrator maintain the integrity of the system:

• Malicious code protection — virus and malware scanners protect the system from viruses, Trojan horses, ransomware, backdoor attacks and many other forms of malicious code and malware. They continuously scan the control system for file transfers via network connections or sharable data mediums, and periodically scan the control system’s file system. When threats are detected, files are either quarantined or protected from opening or execution. To remain effective against evolving threats, malicious code protection tools must be updated on a regular basis and only the latest version must be run.

• System monitoring and system-generated events — to detect attacks or unauthorized use, smart lighting systems should notify the operator of any suspicious activity and provide the operator with a history of system activities.  Receiving such information allows an operator to troubleshoot or audit the system and detect current or future problems.

• Software, firmware, and information integrity — it is essential that operators and users trust that the system is running the correct software and firmware, and that neither is accidentally or maliciously altered. The integrity of both can be protected by various integrity checks and functions. For instance, validated digital signatures can be required to execute software and firmware. In the same way, the system needs to check the integrity of critical system and personal information by applying various types of integrity checks.

• Information input validation and error handling — input validation protects the system from accidental or malicious malfunction due to invalid inputs that could result in system or application crashes, system restarts, or system lock ups. It ensures maximum system availability and filters malicious input vectors that could be used to exploit the system. Proper error messages indicate user and system errors. They need to be meaningful enough that a user or system operator can easily understand the error and take proper action to correct the error. However, it is also important that these error messages can’t be used by an attacker to exploit the system.

• Fail-safe procedures — in the case of a system or system component failure, the control system should switch to a known fail-safe state and be able to execute fail-safe procedures. A fail-safe state could be a defined default state, error state, or other state that allows basic system functions to run independently of the failed system components. It is important that these states and procedures protect the safety of the system and its users, as well as the security functions of the system.

• Security function verification — the control system operator needs to trust system security functions. In many cases, control systems provide an integrated verification of these security functions. It is important that the operator or administrator of the system check the critical security functions on a regular basis.

The Encelium Extend Light Management System has been accepted as a secure system by the GSA (General Services Administration), an independent agency of the United States government, and is currently used for smart lighting in government and commercial buildings. Learn more: www.osram.us/ds/products/light-management-systems/encelium/index.jsp.

Part 4, available shortly, will focus on insider threats and more. 
Source https://info.osram.us/blog/smart-lighting-system-security-system-and-communications-protection-strategies

Related Articles


Latest Articles

  • Guide to the Canadian Electrical Code, Part 1[i], 26th Edition– A Road Map: Section 56

    Guide to the Canadian Electrical Code, Part 1[i], 26th Edition– A Road Map: Section 56

    February 6, 2026 By William (Bill) Burr The Code is a comprehensive document. Sometimes it can seem quite daunting to quickly find the information you need. This series of articles provides a guide to help users find their way through this critical document. This is not intended to replace the notes in Appendix B or Read More…

  • 3D Printing: Inside Lighting’s Next Revolution

    February 5, 2026 While 3D printing in mass production was once a dream, advancements in the technology have moved it more into the mainstream. The technique, which is also referred to as additive manufacturing, has rapidly evolved from a niche prototyping tool into a transformative production method for many sectors, including the lighting industry. As Read More…

  • Microgrids & Power Quality: Designing Resilient, Clean Facility Power

    Microgrids & Power Quality: Designing Resilient, Clean Facility Power

    February 5, 2026 In an era of extreme weather, aging infrastructure, and ever‑rising energy demands, many facility managers are rethinking their relationship with the grid. Microgrids offer a way to take control and operate autonomously when necessary. A microgrid is more than just backup, when designed properly, it becomes a platform for resiliency, efficiency, and Read More…

  • ITC 101: Understanding NEMA Ratings for Electrical Enclosures

    ITC 101: Understanding NEMA Ratings for Electrical Enclosures

    February 5, 2026 Understanding NEMA Ratings for Electrical Enclosures NEMA Ratings are an essential classification system used across North America to define the environmental and mechanical protection provided by electrical enclosures. Developed by the National Electrical Manufacturers Association (NEMA), these ratings help engineers, installers, and specifiers identify the appropriate enclosure type for industrial, commercial, and outdoor Read More…


Changing Scene

  • Lighting What’s Next: Stanpro Celebrates 65 Years

    Lighting What’s Next: Stanpro Celebrates 65 Years

    February 6, 2026 “We didn’t get here by standing still. For 65 years, we’ve shaped how we think, how we design, and what responsibility means,” the company said in a LinkedIn post. “Today, that thinking takes a new form. Not to change who we are, but to express our evolution more clearly. This is Stanpro, Read More…

  • Housing Priorities on Track in New Brunswick, but More Work to do: Hickey

    Housing Priorities on Track in New Brunswick, but More Work to do: Hickey

    February 6, 2026 Efforts to support the creation of new affordable housing and reduce chronic homelessness are on track, but there is still lots of work to do, according to David Hickey, the minister responsible for the New Brunswick Housing Corporation. New data indicates progress has been made on three key government priorities related to Read More…

  • BJ Electric is now Bernie’s Electric Supplies Ltd

    BJ Electric is now Bernie’s Electric Supplies Ltd

    February 6, 2026 BJ Electric had been teasing a major announcement on their social media recently, before finally announcing last week they have rebranded as Bernie’s Electric Supplies Ltd, a nod to the company’s founder and legacy. “BJ Electric Supplies is now Bernie’s Electric Supplies—in honor of our founder, Bernard Joseph Thompson, and the values Read More…

  • The Government of Canada Introduces the Build Canada Homes Act

    The Government of Canada Introduces the Build Canada Homes Act

    February 6, 2026 The Government of Canada has introduced the Build Canada Homes Act, legislation that will establish Build Canada Homes as a Crown corporation whose mandate will be dedicated to building affordable housing in communities across the country. As Canada’s affordable housing builder, this legislation will equip Build Canada Homes with the necessary tools to Read More…