Will Controls Be Key to Circadian Lighting?

Lighting

June 28, 2021

By Craig DiLouie

While “circadian lighting” varies in definition, it generally refers to design that uses intensity and spectrum of light for a non-visual effect — namely, to support regulation of circadian rhythms. A new study suggests that by enabling intensity and spectral adjustment and optimizing exposure based on time of day, designers and owners can minimize the energy trade-off imposed by associated typically much higher light levels. This would entail use of an advanced lighting control system capable of scheduled dimming and perhaps spectral emission adjustment.

Circadian lighting, or biologically effective lighting, is the culmination of decades of research, though as a design practice it is new to the lighting industry. As such, it’s evolving as ongoing research is incorporated. In the meantime, the WELL Building Standard V.2, UL Design Guideline 24480, and the Collaborative for High-Performance Schools (CHPS) Core Design Criteria 3.0 all provide lighting design recommendation and goalposts for circadian lighting implementation.

In some cases, the guidelines significantly vary, either in the primary metric used or in the target values. The primary metrics used in these guidelines are equivalent melanopic flux (EML) and circadian stimulus (CS). As an example of variation in target values, at the time the study was published, the WELL Education Pilot recommended EML ≥ 125 m-lux as an appropriate stimulus four hours per day, while CHPS recommended that EML ≥ 250 m-lux was needed. As a result, it is difficult to say what “effective implementation” truly means, as again the guidelines vary and continue to evolve as new research becomes available and is incorporated.

Meanwhile, a key question in making these guidelines actionable is the potential impact on energy use, as they may pose significant increases in indoor light levels.

This was the focus of a new study by the Pacific Northwest National Laboratory (PNNL), which evaluated energy use in simulated designs attempting to comply with the guidelines. Funded by the U.S. Department of Energy, the study found significant increases in indoor light levels and associated energy consumption, suggesting an energy tradeoff in realizing circadian lighting goals.

PNNL modeled an open office and classroom, varying light output, spectral emission, light distribution, task orientation, duration of stimulus exposure, and more in a series of simulations totaling 45 unique conditions. The researchers determined that current IES task light level recommendations did not satisfy EML and CS targets for either office or classroom environments.

Lighting

“In some cases, meeting the circadian metric recommendations required an average illuminance that was more than double the IES recommendations, which may negatively affect lighting quality and increase energy use,” noted the study’s authors in their report. Satisfying circadian metric recommendations in some cases also required correlated colour temperatures (CCTs) much higher than typically used in open offices and classrooms.

Overall, PNNL estimated a 10-100%increase in annual energy use depending on the number of hours per day the circadian guideline is met. The more conservative energy estimates, closer to 10-15%, involved limiting duration of circadian stimulus to four hours per day, which would most effectively be implemented using an advanced lighting control system providing what is sometimes referred to as “light showers.”

Tunable-white offers utility for circadian stimulus but presents its own trade-offs of increased complexity and modestly higher energy consumption. Another option to reduce the required quantity of electric light is daylight, though that has its own challenges, notably variability in daylight availability.

So will lighting controls be key to unlocking the potential of circadian lighting? As again the field is evolving, this remains to be seen. The study authors noted that the energy trade-off cannot be fully expressed until circadian lighting metrics and effective stimulus delivery are better understood.

As circadian lighting may require higher indoor light levels, however, advanced controls are certainly well positioned for their ability to automatically adjust intensity and spectrum based on time of day.

As shown by this study, limiting the duration of circadian stimulus by adjusting intensity and spectrum can support circadian lighting implementations while minimizing the energy trade-off. As such, lighting controls will be considered along with other factors in future research that may be undertaken to explore the trade-off and how it can be mitigated. And lighting controls should be considered when seeking to implement current circadian lighting guidelines.

Read the study here www.energy.gov/sites/prod/files/2020/08/f77/ssl-safranek-etal-2020_EnergyBuildings_energy-impact.pdf.

Craig DiLouie, L.C., is a lighting industry journalist, analyst and marketing consultant. Learn more at ZINGinc.com http://www.zinginc.com/  and LightNOWblog.com.​

Published with the permission of Lighting Controls Association.

Related Articles


Latest Articles

  • Declines in Ontario and Manitoba Construction Intentions Push Down the Non-Residential Sector

    Declines in Ontario and Manitoba Construction Intentions Push Down the Non-Residential Sector

    December 16, 2024 The total value of building permits issued in Canada decreased by $399.1 million (-3.1%) to $12.6 billion in October. This comes on the heels of a strong September, during which construction intentions rose by $1.3 billion to the second-highest level in the series. Despite the monthly decline in October, the total value of building permits… Read More…

  • Lighting Control Basics for Home Automation

    Lighting Control Basics for Home Automation

    By Matthew Biswas Do your eyes roll when you hear terms like Smart home technology?  Or are you a true believer?  As it turns out controlling electrical devices via low-voltage technology can be easier to implement and use than many of us thought. The Lutron Caseta system uses the internet and Radio Frequency to instantly… Read More…

  • Grounded in Ontario: The Future of Energy Storage Systems

    Grounded in Ontario: The Future of Energy Storage Systems

    December 16, 2024 Technical Advisor Trevor Tremblay explains why following best practices and relying on licensed professionals will ensure a smooth and secure transition when integrating this exciting new technology. Energy Storage Systems (ESS) are revolutionizing the way individuals and businesses manage energy, providing cost-saving opportunities, increased energy reliability, and a pathway toward sustainability. In… Read More…

  • 4 in 5 Canadians See Electrifying Public Transit as Key to Advancing Climate Action, Schneider Electric Survey Finds

    4 in 5 Canadians See Electrifying Public Transit as Key to Advancing Climate Action, Schneider Electric Survey Finds

    December 13, 2024 Schneider Electric has released new survey findings showing Canadians are increasingly concerned about the environmental impact of traditional public transit emissions. According to the survey, 83 per cent of Canadians recognize the need for electrified transit to support a sustainable future and are seeking actionable and innovative solutions to ease the nation’s… Read More…


Changing Scene