Adaptive Lighting Systems Part 3: Scheduling

June 8, 2016

The lighting control strategy we’re reviewing today is a low-hanging fruit when it comes to energy savings, especially when we talk about smart lighting systems. Much simpler both in concept and implementation than occupancy sensing or daylight harvesting, scheduling still aims to do pretty much the same thing — eliminate unnecessary lighting usage. But since no sensors are involved, it doesn’t allow luminaires to respond to certain changes in the environment. Instead, it makes them perform in accordance with a predefined schedule.

In a lighting system employing the scheduling strategy, luminaires can automatically turn on, turn off, or dim at certain times of the day. And that’s it. As straightforward as the entire concept is, even simple lighting schedules can produce tangible benefits in spaces with predictable occupancy — offices, classrooms, retail sales floors, etc. The most basic use case involves lights automatically turning on just before the expected arrival of occupants, and turning off at the end of standard operating hours within a given space. Going further, luminaires can be set to dim (e.g., by 50% after normal business hours), and stay at that level for the next hour or two before shutting down completely. During that time, the cleaning crew can do its job, or the employees can perform various maintenance tasks, such as restocking, which do not require above-average light levels that we usually see e.g. in the retail segment.

But those more sophisticated time-based controls can be used to deploy more multifaceted lighting schedules. Different schemes can be set up for weekdays and weekends, summertime and wintertime, and so forth. Occasional events can also be programmed to make light behave in a desired way (e.g., once a month or once a year). There are multiple scenarios that can be implemented to make a given lighting system more autonomous and thus more efficient. And just like in the case of advanced control strategies reviewed previously, larger spaces can be divided into zones, with separate schedules defined for each of them in accordance with predicted occupancy.

In the vast majority of cases, some sort of manual controls must be provided to building occupants to allow them to override deployed lighting schedules when needed. Even a perfectly tuned schedule might have to be disabled from time to time to support certain special events, such as those midnight sales at shopping malls, or just some after-hours office work.

There are two major approaches to the scheduling strategy — one based on a standard time-of-day clock, and the one based on an astronomical clock. The former allows lights to perform certain actions at specific hours, while the latter makes them behave in a desired way when the sun’s angle above the horizon reaches specific values. Scheduling based on an astronomical clock is usually used when we want to make the lights aware of exact sunrise/sunset times in a given area. How does the lighting system know what’s the current position of the sun? This can be calculated based on UTC and the building’s geographic location. Astronomical time schedules are particularly useful for all types of outdoor lighting, but they can get the job done wherever the lights are supposed to turn on at dusk and off at dawn. Shop display lighting is a perfect example.

We’ve earlier called scheduling a low-hanging fruit as far as lighting energy savings are concerned. That’s because of the relatively small effort required to deploy such a strategy. Occupancy sensing and daylight harvesting require the sensory infrastructure, making both deployment and setup way more time and cost consuming. To apply a scheduling strategy to a traditional lighting system, relevant luminaires only need to be wired to a programmable control panel. Once this is provided, lights can start acting in accordance with a user-defined timetable. The entry barrier isn’t particularly high, although putting the entire office building lighting on a schedule isn’t something that can be done overnight. At least not in the case of traditional, wired systems.

Smart luminaires are a different story. Once a connected lighting network is deployed in a given space, lights can be scheduled right away without any additional installation works — as long as the provider of a particular smart lighting platform offers a relevant software layer supporting this capability. Control wires are not needed as individual nodes of the network talk to each other via a wireless communication protocol. A control panel is unnecessary, too, since smart modules inside bulbs or drivers can process all the scheduling procedures on their own. All the input data, such as event activation times or desired light levels, can be conveniently entered through a smartphone app. And since smartphones know exactly what time it is and what their current geographic location is, they can automatically feed the smart lighting system with all the information that is required to enable any sort of scheduling strategy, including the one based on an astronomical clock. Simply put, all the tools are already in place and can be used to implement even the most sophisticated schedules. Retrofitting into advanced lighting controls has never been any easier.

Smart lighting also provides outstanding flexibility in scheduling lighting operation. It allows for scheduling any desired scenes, so that any group of luminaires can switch on at a desired time, each with a different output. And if a particular connected ecosystem goes beyond lighting, other types of devices can also become part of those scenes. How about shades automatically adjusting their operation to the current position of the sun? In a software-defined environment, this is just a matter of several lines of code implemented into smart modules hidden inside individual devices.

When it comes to the requirement of local manual overrides, smart lighting has the answer, too. Traditionally, this has been solved using wall switches or telephone dial-up codes. But who needs any of these when occupants of a particular space can be authorized to control individual lighting fixtures from their smartphones, allowing them to override the scheduled shut-off whenever desired.

Time-based controls are the first step towards an autonomous lighting system. Considering how easy it is to implement scheduling in a smart environment, this lighting control strategy should be a no-brainer for any type of space with fixed operating hours. It saves energy and maintenance costs, adds convenience for occupants, prevents light pollution and helps building owners meet some of the requirements of building energy codes. It combines perfectly with occupancy sensing, allowing for trimming the maximum allowable light level outside standard operating hours, but even on its own it can provide lighting energy savings in the range of 15% to 35%. This is yet another reason to retrofit into a smart lighting system, and instantly start enjoying the benefits of highly flexible and efficient advanced lighting control strategies. Such an investment pays huge dividends.

Read Part 1: Adaptive Lighting Systems Part 1: Occupancy Sensing
Read Part 2: Adaptive Lighting Systems Part 2: Daylight Harvesting

This article first appeared as a Silvair blog post. 


Silvair’s team of software developers, hardware engineers, UX designers, product managers and testers are building a growing network of products that are truly smart and user friendly: https://www.silvair.com.

 

Related Articles


Latest Articles

  • How ABB’s Hi-Tech Valiant™ Current Limiting Fuse for Fire Mitigation Impacts Safety & Reliability, Protecting the Environment & Critical Infrastructure

    How ABB’s Hi-Tech Valiant™ Current Limiting Fuse for Fire Mitigation Impacts Safety & Reliability, Protecting the Environment & Critical Infrastructure

    March 13, 2025 By Blake Marchand Discussing the Hi-Tech Valiant™ Fuse for Fire Mitigation with ABB’s Dominique Tardif There has been increased awareness on the impact of forest fires in recent years, as wildfire seasons have intensified in North America. We recently saw devastating fires in California, and in Canada, statistics show that each year wildfire seasons… Read More…

  • EFC Tariff Update Hub

    EFC Tariff Update Hub

    March 13, 2025 EFC’s Tarrif Update Hub provides a centralized location for EFC actions, government advocacy, and key industry resources regarding the ongoing tariff situation between Canada and the United States. Designed to keep EFC members aligned and ahead of developments, check back for updates and insights to help you navigate the evolving landscape. EFC… Read More…

  • International Women’s Day 2025: Advancing Equity in the Skilled Trades

    International Women’s Day 2025: Advancing Equity in the Skilled Trades

    March 13, 2025 On March 8, 2025, CAF-FCA celebrates International Women’s Day (IWD) by reaffirming our commitment to breaking barriers and advancing opportunities for women and equity-priority groups in the skilled trades. This year’s theme, “For ALL Women and Girls: Rights. Equality. Empowerment,” is a powerful call to action—one that aligns with our efforts to… Read More…

  • EFC is Proud to Recognize March 8 as International Women’s Day

    EFC is Proud to Recognize March 8 as International Women’s Day

    March 13, 2025 By Electro-Federation Canada Imagine a gender equal world. A world free of bias, stereotypes, and discrimination. A world that’s diverse, equitable, and inclusive. A world where difference is valued and celebrated. Together we can forge women’s equality. Collectively for #IWD2025 we can all #AccelerateAction. Focusing on the need to Accelerate Action emphasizes the importance of taking swift… Read More…


Changing Scene

  • Canada Invests in Deep Energy Retrofits for Affordable Housing in Hamilton

    Canada Invests in Deep Energy Retrofits for Affordable Housing in Hamilton

    March 13, 2025 There is a need and an opportunity for Canada to strengthen energy security and affordability for all Canadians. Canada’s buildings sector is the third-largest contributor to greenhouse gas emissions across the country. By increasing the scale and pace of building retrofits, we can make homes and buildings more energy-efficient and improve reliability in units.  The federal… Read More…

  • Tesla Products Excluded from BC Hydro Incentive Program

    Tesla Products Excluded from BC Hydro Incentive Program

    March 13, 2025 CBC has reported that BC Hydro is excluding Tesla products from their EV charger incentive program. However, products purchased prior to March 12 will still be eligible. “As of March 12, Tesla chargers, energy storage batteries and inverters are not eligible for rebates, according to B.C. Hydro. Those who have purchased or… Read More…

  • Acuity Rebrands and Introduces New Corporate Identity

    Acuity Rebrands and Introduces New Corporate Identity

    March 13, 2025 Acuity Brands, Inc.’s corporate name is changing from Acuity Brands, Inc. to Acuity Inc. effective March 26, 2025. Acuity will continue to operate through two business segments, Acuity Brands Lighting (ABL) and Acuity Intelligent Spaces (AIS), formerly Intelligent Spaces Group (ISG). They will continue trading on the New York Stock Exchange under the ticker symbol “AYI”. “Acuity is positioned for long term growth…. Read More…

  • IDEAL Electrical™ Unveils Fresh, Modern Brand Identity

    IDEAL Electrical™ Unveils Fresh, Modern Brand Identity

    March 7, 2025 IDEAL Electrical was the first company to obtain a patent to make and sell wire connectors in the United States 96 years ago this month – and today IDEAL® announces a modern look for the brand, which captures the company’s spirit of relentless innovation and the optimistic future of the electrical trade. … Read More…