Electrical Energy Storage: IEC Report on Present and Future Needs, Part 1

Energy Storage Smart Grid

 

Feb 6, 2016

In the near future, electrical energy storage will become indispensable in emerging markets for smart grids and in renewable energy for reducing CO2, says the International Electrotechnical Commission. In a just-published document, the commission summarizes present and future market needs for electrical energy storage technologies, reviews their technological features, and makes recommendations for all electrical energy storage stakeholders.*

In this first of two parts, the document’s conclusions. But first, an overview of the role of electrical energy storage.

Historically, electrical energy storage has played three main roles:
• reducing electricity costs by storing electricity obtained at off-peak times when its price is lower for use at peak times
• improving power supply reliability through systems support of users when power network failures occur
• maintaining and improving power quality, frequency and voltage.

In on-grid areas of emerging market needs, electrical energy storage is expected to solve problems such as excessive power fluctuation and undependable power supply that are associated with the use of large amounts of renewable energy. In the off-grid domain, electric vehicles with batteries are the most promising technology to replace fossil fuels by electricity from mostly renewable sources.

Electrical energy storage is also a key element in developing a smart grid. By addingsmart grid technologies, the grid becomes more flexible and interactive and can provide real-time feedback. For instance, information regarding the price of electricity and the situation of the power system can be exchanged between electricity production and consumption to realize a more efficient and reliable power supply.

IEC conclusions

The IEC is convinced that electrical energy storage will be indispensable in reaching the public policy goals of CO2 reduction and more efficient and reliable electricity supply and use. It is therefore essential that deployment of storage receive long-term and robust support from policy-makers and regulators.

Three major drivers determining the future of electrical energy storage have been identified:
• the foreseeable increase in renewable energy generation
• the design and rollout of smart grids
• the future spread of dispersed generation and dispersed management of electrical energy, referred to for simplicity as “microgrids”
The results of these drivers on future demand for electrical energy storage may be divided into four market segments:
• total electrical energy storage market
• conventional large- scale systems (e.g., pumped hydro storage, PHS)
• long-term storage (e.g., H2)
• dispersed storage

How these markets are expected to develop has direct implications for
• which technologies will be most needed
• which technology will need what type of further development
• what considerations will influence rollout and penetration
• what implementation problems may be expected

Conclusions regarding renewables and future grids

1. The necessary volume and timing of electrical energy storage is strongly dependent on the pace of renewable energy development, since electrical energy storage is indispensable for introducing large amounts of renewable energy.

2. Autonomous operation, easy extension and coordination with grids are important characteristics of future electrical energy storage. Electrical energy storage is considered to be a key component of the smart grid, among other things as a basic requirement for coping with electrical outages caused by disasters. In addition the smart grid is likely to use, and possibly require, dispersed storage (e.g., batteries installed for local purposes). This in turn implies overall control of many dispersed small storage installations together in the grid.

3. Microgrids will be key to the smart energy use of communities, factories, buildings, etc. Small-scale electrical energy storage is imperative for microgrids to achieve fair and economic consumption of electrical energy. To optimize cost efficiency, microgrids also require that their electrical energy storagebe connected to the grid and be able to adjust smoothly to increases and decreases in the amount of electrical energy consumed. Dispersed facilities, whether generation or storage (e.g., the electrical energy storage in a smart house or an electric vehicle), are normally owned by end users, who have in principle the right to decide how to use the facilities. This implies a differentiated policy and regulatory regime, with conditions applying to centralized facilities distinguished from those applying to dispersed ones.

Conclusions regarding markets

1. The total electrical energy storage market is expected to be large, but will remain very sensitive to cost. This has very specific implications on what R&D and policy goals are recommended. It also means that whether the relevant standards (e.g., to reduce costs by creating or enlarging homogeneous markets) are available at the right moment will have a great influence.

2. Some of the total market will be for conventional large-scale electrical energy storage to enable the introduction of renewable energies. The need for extremely large (GWh and TWh-scale) facilities will increase; in some applications they will need to be operated like conventional generators.

3. Long-term energy storage will be needed when a very high renewable energy ratio is achieved, which, since the storage period is up to several months, implies very large storage amounts. A possible solution: the new electrical energy storage technologies hydrogen and synthetic natural gas. Developing them involves chemical research and engineering, which are beyond the traditional scope of work of the IEC; this gives rise to certain recommendations.

4. The market for small and dispersed electrical energy storage is also expected to be quite large with the rollout of the smart grid and microgrids, implying storage installed at customer sites. Electrical energy storage will be used not only for single applications but simultaneously for several, made possible by integrating multiple dispersed storage sites.

Conclusions regarding technologies and deployment

1. To assure the smooth connection of electrical energy storage to grids, additional technical requirements and the necessary regulatory frameworks need to be investigated. As the renewable energy market grows, the market for electrical energy storage systems, especially for small and dispersed ones, will also expand and require technical specifications and regulation frameworks for grid interconnection of electrical energy storage. The aspects of interconnecting dispersed generation including renewable energy have been investigated. However, issues such as power quality and safety in connecting large numbers of electrical energy storage installations, mostly together with renewable energy, have not yet been thoroughly researched.

2. Given the cost sensitivity, cost reduction is vital to implementation. For this, lifetime cost should be considered, not simply installation cost but also cost of operation and disposal. Low raw material cost, a part of total installation cost, may become a specific selection criterion for electrical energy storage technology. In addition, interoperability among the various very different parts of the whole grid must be ensured, and sophisticated control intelligence is also essential for availability and overall efficiency. Successful deployment in any one country may further depend on the size and health of an indigenous “electrical energy storage supply industry,” which can help to control costs and ensure availability.

3. Three storage technologies seem to emerge from the study as the most significant. In order of decreasing technological maturity, they are
• pumped hydroelectricity (PHS)
• electrochemical batteries
• hydrogen/synthetic natural gas

The last two both in different ways need more development than PHS. Batteries require development primarily to decrease cost, and for some technologies to increase energy density as well; hydrogen/SNG must be further researched and developed across a broad front, including physical facilities, interactions with existing uses of gas, optimal chemical processes, safety, reliability and efficiency.

This, finally, leads to the actions themselves, i.e., to recommendations. It will be seen in Part 2 that recommendations fall into groups addressed to three different audiences: policy-makers including regulators, companies and laboratories deciding what research and product development to pursue, and the IEC itself for what standards will be needed by all EES market players.

* Read the entire document: www.iec.ch/whitepaper/pdf/iecWP-energystorage-LR-en.pdf.

 

Related Articles


Latest Articles

  • EFC Letter on China Tariffs

    EFC Letter on China Tariffs

    September 15, 2024 The Canadian federal government intends to apply a 25 per cent surtax on imports of steel and aluminum products from China, effective October 15, 2024. See announcement here. The initial list of impacted goods was released for public comment and submissions are due September 20, 2024.  The list of products is available… Read More…

  • Changing How we Build Homes: A Year of the Housing Accelerator Fund

    Changing How we Build Homes: A Year of the Housing Accelerator Fund

    September 15, 2024 The Government of Canada is highlighting key results that have come from the first Housing Accelerator Fund since the start of the Program. This week marks the closure of the application portal for the second round of the HAF. HAF was created to incentivize local governments to implement structural and lasting reforms that will increase… Read More…

  • Multi-Unit Construction Intentions Fuel Growth in the Residential Sector for July Building Permits

    Multi-Unit Construction Intentions Fuel Growth in the Residential Sector for July Building Permits

    September 15, 2024 Month over month, the total value of building permits in Canada surged 22.1% to $12.4 billion in July, rebounding from two consecutive monthly declines. Both the residential and non-residential sectors expanded in July. On a constant dollar basis (2017=100), the total value of building permits in July was up 22.9% compared with the previous month,… Read More…

  • B.C. Building Code Updated to Support More Homes

    B.C. Building Code Updated to Support More Homes

    September 15, 2024 Changes to the BC Building Code (BCBC) will allow single egress stair (SES) designs in low- and mid-rise buildings to support more multi-bedroom apartment options. The Province has updated the BCBC to remove the code requirement for a second egress, or exit, stairwell per floor in buildings up to six storeys. This change will… Read More…


Changing Scene

  • Leviton Canada Achieves Another Year of Carbon Neutrality

    Leviton Canada Achieves Another Year of Carbon Neutrality

    September 15, 2024 Leviton Canada proudly reaffirms its commitment to sustainability by achieving carbon neutrality once again in 2023. The company has significantly reduced their environmental footprint by 32% compared to 2022, with a substantial impact on transportation. Despite having energy-efficient lighting and relying on hydropower—a clean and renewable energy source—for their facility, transportation (both… Read More…

  • Grand Opening: Legrand BCS Office in Markham

    Grand Opening: Legrand BCS Office in Markham

    September 15, 2024 Legrand is thrilled to announce the grand opening of their new BCS facility in the heart of downtown Markham, ON, located at 85 Enterprise Blvd, Suite 400, which is set to take place on Thursday, September 19th, 2024. “Our facility in Vaughan will remain open to continue to stock inventory for Canada… Read More…

  • Gescan Announces Partnership with PataBid

    Gescan Announces Partnership with PataBid

    September 15, 2024 Gescan is excited to announce our partnership with PataBid Quantify. PataBid is a Canadian company, with software built for contractors which integrates live supplier pricing, manual drafting, and AI technology with human expertise to maximize take offs and bidding. Patabid’s Quantify software will allow contractors to access live pricing from Gescan’s website… Read More…

  • Electrical Safety Authority Unveils ‘A-MAZE-ing’ Interactive Experience to Keep Kids Safe from Electrical Harm

    Electrical Safety Authority Unveils ‘A-MAZE-ing’ Interactive Experience to Keep Kids Safe from Electrical Harm

    September 15, 2024 The Electrical Safety Authority (ESA) cut the ribbon on its new interactive experience, “The A-MAZE-ing Adventures of Carter Current”, located at the Peel Children’s Safety Village. The interactive space is designed to help educate and keep kids safe from electrical harm by learning about electrical hazards through play. “We are excited to partner with… Read More…