The Poet’s Guide to the Physics of Twisted Pair Cabling

Poet's Guide

Feb 26, 2020

I once took a class where the professor would explain concepts in two ways. First, he would dive into the mathematics behind the idea, filling the whiteboard with equations and showing how they all related to one another. He tagged this “for the engineers,” Then, he would explain the concept again, but this time, with no math at all. This he said, was “for the poets.” 

So why is datacom cabling twisted, but power cabling is not? It’s all about bandwidth. Power signals are of such low frequencies that they don’t need to worry about bandwidth, but datacom cables do. A high frequency signal on a wire generates a magnetic field that can induce a signal on an adjacent wire. These induced signals are called “crosstalk,” because with old analog telephone lines, you could often hear other conversations in the background of your call resulting from these induced signals.

Imagine the Ethernet interface in your computer transmitting a signal. When a signal is sent on the transmit (Tx) line, a signal is induced on the receive (Rx) line. That’s a problem because the rules of Ethernet state that you stop talking if someone else is talking at the same time. But if every time your computer tried to talk, it would hear itself, and stop. Looks like you won’t be sending the email after all.

In reality, the induced signal is many times weaker than the original, which makes this less of a problem. However, the receive electronics need to be very sensitive. That’s because high frequency signals attenuate greatly over the length of a cable. For example, the IEEE 802.3 specification for 1000BASE-T allows a maximum of 24 dB of loss, which translates to a signal being reduced to (I’ll do the math for you poets) 6% of its original strength on its trip from the far end transmitter to your computer’s ethernet port. So the crosstalk signal does not have to be big to overwhelm that. As you move further from your computer interface, the received signal gets stronger and is less susceptible to crosstalk. That means the problem is worst nearest to the transmitter, so the key specification is called Near End Crosstalk or NEXT.

Engineers have a number of tricks up their sleeves to deal with NEXT. First, data signals are encoded onto a cable in “differential” mode — that means that every positive pulse on a conductor is matched by a corresponding negative pulse on the other conductor in the pair. That means that the wires generate equal but opposite magnetic fields that cancel each other out and should generate no crosstalk. However, if the wires simply run parallel to one another, then one wire in the pair will be closer to one of the fields, so the magnetic field will be just a little bigger for one wire than the other and you’ll get a little bit of crosstalk.

So the second trick is twisting the cable. That way, the distance between the wires varies along the length of the run, sometimes closer to the positive wire, other times closer to the negative. This tends to cancel out the effect reducing the crosstalk even more. But if the pairs are all twisted at the same rate, it’s possible that they would keep the same spacing over the entire run, resulting in increased crosstalk. That’s where the third trick comes in – the pairs are twisted at different rates so they won’t remain equally spaced to the same conductor along the run. 

The different twist rates are why you’ll see different lengths for each pair when you measure the length of each with a cable tester. If you were to untwist them and stretch them out flat, the ones with more twists would be a little bit longer. Length can differ by 5% or more — the TIA limit for cabling length is based on the shortest pair.

Even though the conductors run in parallel for only a short distance in the modular (RJ-45) connector, they typically are the biggest contributor to NEXT on an installed link. And just a little too much untwisting when installing the connectors can enhance the effect enormously and lead to links failing certification.

Newer designs achieve better crosstalk performance by using spacers in the cabling, more carefully controlling twist rates, and bonding the pairs together. And new technologies such as 10GBASE-T and PoE require more than just great crosstalk performance. But crosstalk is still one of the most important parameters in terms of high performance cabling.

If you are interested in a cable tester, check out our Copper Selection Guide.

This article was first published online by Fluke Networks.

Related Articles


Latest Articles


Changing Scene

  • Intralec Named New Sales Agency Partner for IDEAL Electrical in Central & Southwestern Ontario

    Intralec Named New Sales Agency Partner for IDEAL Electrical in Central & Southwestern Ontario

    July 7, 2025 Intralec Electrical Products is proud to announce our new partnership with IDEAL Electrical as their sales agency for the Central & Southwestern Ontario regions. As a Canadian manufacturer with over 60 years of experience producing quality products—many of which, like the Can-Twist wire connector and Yellow 77 lubricant, are made in Ajax,… Read More…

  • City of Winnipeg Continues to Improve Online Permits System

    City of Winnipeg Continues to Improve Online Permits System

    July 4, 2025 The City of Winnipeg has launched an improved Permits Online web portal. This upgrade aims to make the permit process more convenient for customers. Permits Online is a one-stop shop to manage the permit process. Now, the web portal is easier to use because customers can navigate it using their mobile device. The portal… Read More…

  • Schneider Electric Launches Chapter 3 of Sustainability School

    Schneider Electric Launches Chapter 3 of Sustainability School

    July 4, 2025 Schneider Electric, the leader in the digital transformation of energy management and automation, has launched Chapter 3 of its online Sustainability School, a free training program designed to empower its channel ecosystem partners to become leaders in sustainability. This chapter will focus on teaching businesses how to decarbonize and unlock the competitive… Read More…

  • United Chargers Launches Grizzl-E Club Charger-as-a-Service Subscription Model

    United Chargers Launches Grizzl-E Club Charger-as-a-Service Subscription Model

    July 4, 2025 United Chargers Inc., known for the Grizzl-E line of EV chargers, announces Grizzl-E Club, a first-of-its-kind charger as a service that provides a free EV Charger and pays drivers back for charging. Grizzl-E Club is designed to make EV ownership more rewarding, accessible, and future-ready. Beginning July 1st, Canadians can join the Grizzl-E… Read More…