Dartmouth Engineering Students Conduct First-of-its-Kind Independent Study on Energy Efficiency in Cannabis Cultivation

A researcher in a cannabis growing facility

August 31, 2022

Dartmouth’s Thayer School of Engineering and Arthur L. Irving Institute for Energy and Society today announced the results of the first-ever independent study on energy efficiency in the cannabis industry. The study was sponsored by the Sustainable Cannabis Coalition and also supported by Rocky Mountain Institute and seasoned building science engineers. These staggering results were based on data collected from MariMed Inc. (OTCQX:MRMD), a leading multi-state cannabis operator based in Norwood, MA, and Culta, a Maryland-based vertically integrated seed-to-sale cannabis company offering indoor and outdoor-grown cannabis and accessories.

A team of six senior engineering students conducted research through the Cook Engineering Design Center (CEDC) at Dartmouth over a six-month period during the 2021–22 academic year, adopting a whole system approach to meet plant and grower needs by focusing on yield per unit of energy, cost, and carbon emission. This research will ultimately provide regulators and industry operators with key insights into how the cannabis industry can meet climate, grid, and energy goals while improving business operations and cost targets.

“This research provides an independent, fact-based analysis of the enormous potential for the cannabis industry to reduce both capital and operating costs while improving key metrics like grams of product per kilowatt hour of energy and grams of product per grams of CO2 emission,” said Dr. Stephen Doig, Senior Research and Strategy Advisor at the Irving Institute.

“The students found that operators using LED lights can reduce energy use by 50% with even greater savings for those using HPS systems. Even larger savings are likely available to the indoor cannabis industry overall since the scant data available suggests that industry-wide energy use intensity is 2-3X higher than the optimal minimum conditions needed for robust product production.”

Dr. Stephen Doig

The students’ adapted methodology pioneered at Rocky Mountain Institute (RMI) by understanding the key needs of the plants (light, temperature, VPD, water) for optimal production. They also took into consideration that plant needs change over the growth cycle and that heating and humidity loads can vary by 10-fold across the day-night cycle. The team explored active and passive options to meet those needs dynamically and grounded their analysis by fully metering grow lights, humidity, and temperature control systems. The study yielded significant results, including:

  • Under “optimal minimum” conditions, HVAC systems can reduce fan energy by 50% during the light cycle and 90% during the dark cycle especially if a displacement ventilation approach to humidity control is adopted.
  • Using the best LED lights can reduce cooling needs by 10% compared to average LEDs and by 30+% compared to HPS.
  • The students also demonstrated that using air-side economizers (free outdoor air cooling) could further reduce mechanical cooling needs by an additional 40+% depending on facility location. Free cooling is a standard practice in the building industry today (and code in many states).

“Regulators and grid operators should applaud the results since widespread industry adoption will lower peak demand on the grid and provide guidance on key metrics to compare operators across the industry,” said Dr. Doig.

To allay fears of contamination from the outdoors the students pointed out that industries highly sensitive to contamination like pharmaceuticals and semiconductors use filtration to manage contamination levels. While the study did not address capital costs in detail the results suggest that growers who adopt an optimal minimum approach will save capital as well as operating costs since HVAC systems will be smaller and/or there will be fewer of them for the same yields.

“We were incredibly impressed by the knowledge, passion, and commitment of the Dartmouth students and faculty involved in the study, and thankful for the opportunity to participate,” said Tim Shaw, COO of MariMed. “As a company committed to improving people’s lives every day, we take our responsibility to help create a cleaner environment very seriously. Implementing Dartmouth’s recommendation to redesign cooling and dehumidification implementation and to install even higher-efficiency LED lighting in our facilities is just one of many initiatives we are considering as part of our sustainability efforts at MariMed.”

The Sustainable Cannabis Coalition in partnership with RMI, Dartmouth, and other key industry players intends to conduct further research in the 2022–23 academic year.

“Based on the success of this initiative, we are looking forward to extending the work with Dartmouth into additional new-build opportunities, retrofits, and developing consistent industry metrics for energy efficiency and GHG’s,” said Shawn Cooney, co-founder of the Sustainable Cannabis Coalition. “Our members are eager to participate in the process of standardizing the way our industry approaches its use of resources. We need to measure our usage of scarce resources across all phases of our product’s life cycles.”

SCC members and partners, Culta, Byers Scientific, Anderson Porter Design, Valiant, Sustain.Life, Fluence, and Inspire also participated in the research, providing additional information to the Dartmouth team.

Source

Photo: Dartmouth Engineering student Jason Carpio ’22 Th’22 conducts research at Culta for his team’s project: “Radically Efficient Cannabis Cultivation Facility.” Additional team members: Jack Firestone Th’22, Clara Hahn ’22 Th’22, Griffin Lehman ’22, Grace Qu ’22 Th’22, Ivy Yan ’22 Th’22. (Photo courtesy of Dartmouth Student Sustainable Cannabis Team.)

Related Articles


Latest Articles

  • Declines in Ontario and Manitoba Construction Intentions Push Down the Non-Residential Sector

    Declines in Ontario and Manitoba Construction Intentions Push Down the Non-Residential Sector

    December 16, 2024 The total value of building permits issued in Canada decreased by $399.1 million (-3.1%) to $12.6 billion in October. This comes on the heels of a strong September, during which construction intentions rose by $1.3 billion to the second-highest level in the series. Despite the monthly decline in October, the total value of building permits… Read More…

  • Lighting Control Basics for Home Automation

    Lighting Control Basics for Home Automation

    By Matthew Biswas Do your eyes roll when you hear terms like Smart home technology?  Or are you a true believer?  As it turns out controlling electrical devices via low-voltage technology can be easier to implement and use than many of us thought. The Lutron Caseta system uses the internet and Radio Frequency to instantly… Read More…

  • Grounded in Ontario: The Future of Energy Storage Systems

    Grounded in Ontario: The Future of Energy Storage Systems

    December 16, 2024 Technical Advisor Trevor Tremblay explains why following best practices and relying on licensed professionals will ensure a smooth and secure transition when integrating this exciting new technology. Energy Storage Systems (ESS) are revolutionizing the way individuals and businesses manage energy, providing cost-saving opportunities, increased energy reliability, and a pathway toward sustainability. In… Read More…

  • 4 in 5 Canadians See Electrifying Public Transit as Key to Advancing Climate Action, Schneider Electric Survey Finds

    4 in 5 Canadians See Electrifying Public Transit as Key to Advancing Climate Action, Schneider Electric Survey Finds

    December 13, 2024 Schneider Electric has released new survey findings showing Canadians are increasingly concerned about the environmental impact of traditional public transit emissions. According to the survey, 83 per cent of Canadians recognize the need for electrified transit to support a sustainable future and are seeking actionable and innovative solutions to ease the nation’s… Read More…


Changing Scene