Dimming Protocols: Part II

 

Andrew Parker

This article is the second of two by the author about the evolution of building controls. Read Part I here.

Lighting controls are readily used in commercial, industrial and residential buildings to save energy. They are also mandated through their inclusion in government building codes and encouraged through energy standards such as ASHRAE 90.1 and LEED.
But the origin of lighting controls is in the theatre. London’s Savoy Theatre was the first in the world to install an electric lighting system in 1881; it used over 1,150 lights to illuminate the stage and auditorium. In 1903, the Metropolitan Opera House in New York City had a similar system featuring 96 resistance dimmers. These first controllers were bulky and complicated; they provided little actual control — dimming only — and required manual operation.

We’ve come a long way and continue to realize advancements in dimming technology and its capabilities. Dimming is an important tool in lighting control because it can significantly contribute to energy savings, while minimizing the impact on occupants. Daylight harvesting can be seamlessly achieved, for example, by gradually dimming lighting as ambient daylight increases. Simplification is achieved also by dimming one zone rather than by sequentially switching off multiple sub-zones.

Dimming systems are becoming more affordable. LED technology, for example, is inherently dimmable and new generations of LED lighting and drivers provide dimming as a standard feature. Also, lower cost digital controllers allow for local devices to provide dimming functionality without the need for large, centralized dimming racks and panels.

However, while the use of digital equipment is on the rise, many of the familiar analogue line and low voltage dimming protocols are still commonplace, including two and three wire phase dimming and 0-10V.

Forward phase dimming
Known as standard, forward or leading edge phase control, this protocol is typically known for its use with incandescent (resistive) loads and MLV transformers (inductive loads). To dim these light sources, the line voltage AC waveform is “delayed” at the beginning of the cycle; the longer the power is delayed, the greater the dimming of the light source. It is a cheap solution for single zone dimming and retrofits since it uses the existing line voltage wiring. While inefficient MLV and incandescent loads are being phased out, some “incandescent compatible” LED lamps have been designed to work with most 2-wire forward phase dimmers. Typically found in residential and small scale commercial applications, forward phase has a restricted low-end dimming limit.

Reverse phase dimming
Known as reverse or trailing-edge phase control, this protocol was developed to accommodate ELV transformers (capacitive loads). Similar to forward phase dimming, the line voltage AC wave form is “cut off” at the end of each half cycle. As more is cut off, less power is applied to the light source and dimming is increased. While it is more expensive than forward phase dimming, this protocol still provides a relatively cheap solution for single zone dimming since it uses the same line voltage wiring required to power the lighting. Reverse phase shares the same challenges around the low-end dimming limit as forward phase, but is typically compatible with commercial lighting, including LEDs, owing to the use of electronic drivers.

3-wire phase dimming
A variant of forward phase dimming developed to accommodate fluorescent ballast dimming, two line voltage wires (plus a neutral) are used. The first provides consistent voltage to the ballast for proper cathode heating, thus allowing for a broader dimming range. The second, or dimmed hot, provides the forward phase control signal. This protocol improves dimming performance over a 2-wire system, but loses the simplicity and ease of retrofit. It is typically used in small scale commercial applications.

Phase dimming with LED retrofit lamps
Dimmable LED retrofit lamps for commercial and residential applications are readily available, but should be carefully considered for critical dimming applications. Wide variations that exist in both the dimmer and LED source characteristics can lead to equally wide variations in dimming performance and compatibility. This compatibility between the controller and the light source is difficult to predict, so mock-up testing is often the best course of action.

0-10V analogue
Sometimes referred to as 4-wire dimming since the power and control signals are supplied over separate pairs of wires, 0-10V dimming has been commonly used in commercial dimming systems of all sizes for many years. It is emerging as the default dimming option with commercial LED fixtures. One reason for its rise in popularity was its documented open standards and consistent performance. The protocol uses two low-voltage, polarity-sensitive conductors to provide a dimming signal, while power is supplied separately to ensure proper operation of the driver. Low end dimming limit and reliability are improved over other analogue protocols, and can be more easily calibrated to provide logarithmic light output to closely match the human eye’s perception of changing light levels.

Examples of 0-10V protocol standards are:
• NEMA ANSI C82.11 Standard for High Frequency Fluorescent Lamp Ballasts, Annex A, Low Voltage Control Interface for Controllable Ballasts Supplements
• IEC 60929 Annex E, 0-10V Sinking (lighting control)
• ANSI E1.3 0-10V Sourcing (theatrical control)

Digital addressable lighting interface (DALI)
While many digital dimming control protocols have been brought to the market requiring special and often proprietary equipment, DALI has emerged as a leader through its use of an open, non-proprietary digital standard. Guided by international standard IEC 62386, DALI is similar to 0-10V in its use of separate line voltage and low voltage wiring and since components from different manufacturers are interchangeable. But the similarities end there. The digital protocol provides individually addressable dimming control and bi-directional communication for data feedback. For example, if a driver fails, the system can provide instant notification of required maintenance.

Looking forward
As manufacturers continue to simplify, educate and perhaps even work together, reservations in the industry that surround dimming will gradually disappear. Not only are dimming systems becoming more affordable as LED technology permeates the lighting landscape, there are other positives too. For example, we have the ability to adjust correlated colour temperature (CCT) to match the familiar warming appearance of dimmed incandescent lighting or to support circadian rhythms to promote health and wellbeing. In addition, as building codes continue to require greater energy savings and as control system prices continue to drop, leveraging dimming technology to provide the solution will be an easy decision.


Andrew Parker, P.Eng., LC, LEED AP is a controls and lighting specialist at Salex in Toronto and a member of the Illuminating Engineering Society of North America (IES). Salex is a lighting agency in southern Ontario, distributing and facilitating commercial lighting systems for architects, engineers and designers; www.salex.ca
.
This article is the second of two by the author about the evolution of building controls. Read Part I here.

 

Related Articles


Latest Articles

  • Littelfuse: Solid-State Industrial Relays Quality Test Report

    Littelfuse: Solid-State Industrial Relays Quality Test Report

    April 21, 2025 Littelfuse Provides Insights Into Their Solid-State Industrial Relays Introduction Solid-State Relays (SSRs) are a critical component in modern electrical & electronic systems, providing reliable switching capabilities for various applications from industrial automation to consumer electronics. When it comes to choosing the right solid-state relay for your application, it’s important to know the… Read More…

  • PataBid vs. Accubid Classic: How Electrical Estimating Software is Evolving

    PataBid vs. Accubid Classic: How Electrical Estimating Software is Evolving

    April 21, 2025 By Melvin Newman, Patabid CEO The landscape of construction technology — especially in electrical estimating software—is evolving at a rapid pace. With the rise of cloud-based platforms, AI-driven automation, and advanced data integration, contractors now have more options than ever when choosing the right digital estimating tool.    With the rise of… Read More…

  • ESA has Identified Increasing Safety Concern Surrounding Meter Base Installations

    ESA has Identified Increasing Safety Concern Surrounding Meter Base Installations

    April 18, 2025 ESA and EFC are raising awareness on an increasing safety concern the ESA has identified surrounding meter base installations. ESA identified an increase of installed meter bases where the neutral block is isolated from the enclosure. According to OESC Rule 10-210 a bonding conductor must be installed between the meter base and… Read More…

  • Non-residential Construction Investment Continues to Reach Record Highs in January 2025

    Non-residential Construction Investment Continues to Reach Record Highs in January 2025

    April 18, 2025 Overall, investment in building construction rose 1.8% (+$393.7 million) to $22.1 billion in January. The residential sector increased 2.3% to $15.4 billion, while the non-residential sector was up 0.8% to $6.7 billion. Year over year, investment in building construction grew 5.7% in January. On a constant dollar basis (2017=100), investment in building construction increased 1.5% from the previous month to $13.2 billion… Read More…


Changing Scene

  • nVent Sustainability Report Highlights Progress and Focus on Electrification

    nVent Sustainability Report Highlights Progress and Focus on Electrification

    April 15, 2025 nVent Electric plc announced the release of its 2024 Sustainability Report. The new report highlights nVent’s achievements in each of its sustainability focus areas: People, Products, Planet and Governance. The report also highlights how nVent solutions support electrification, digitalization and sustainability efforts around the world. “nVent is becoming a more focused electrical… Read More…

  • Ontario Introduces Legistlation to Unlock Trade and Labour Mobility Within Canada

    Ontario Introduces Legistlation to Unlock Trade and Labour Mobility Within Canada

    April 18, 2025 As a next step in its plan to protect Ontario by unleashing the province’s economy, the Ontario government is introducing the Protect Ontario through Free Trade within Canada Act to unlock free trade and labour mobility within Canada. This legislation will, if passed, create new opportunities for job creation and investment attraction, supporting economic… Read More…

  • Ontario, P.E.I. Join Nova Scotia With Legislation to Remove Internal Trade Barriers

    Ontario, P.E.I. Join Nova Scotia With Legislation to Remove Internal Trade Barriers

    April 18, 2025 Prince Edward Island and Ontario have joined the Nova Scotia by introducing reciprocal legislation that will help foster an environment of mutual recognition of goods, services and labour mobility between these provinces. “Leaders across the country are expressing interest in removing trade barriers, and I’m very pleased that P.E.I. and Ontario have… Read More…

  • New Brunswick Signs MOU with Ontario to Reduce Trade and Labour Mobility Barriers

    New Brunswick Signs MOU with Ontario to Reduce Trade and Labour Mobility Barriers

    April 18, 2025 The governments of New Brunswick and Ontario have signed a memorandum of understanding on free trade and labour mobility. “Ontario is New Brunswick’s second-biggest trading partner, and we are excited to be building on the positive momentum to reduce internal trade barriers across Canada,” said Premier Susan Holt. “Today’s signing of this… Read More…